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a  b  s  t  r  a  c  t

Recent  results  show  that  a  predictive  building  automation  can be used  to  operate  buildings  in an  energy
and cost  effective  manner  with only  a small  retrofitting  requirements.  In this  approach,  the  dynamic  mod-
els are  of  crucial  importance.  As  industrial  experience  has  shown,  modeling  is  the  most  time-demanding
and  costly  part of  the  automation  process.  Many  papers  devoted  to this  topic  actually  deal  with  modeling
of  building  subsystems.  Although  some  papers  identify  a  building  as a complex  system,  the  provided  mod-
els are  usually  simple  two-zones  models,  or extremely  detailed  models  resulting  from  the  use  of  building
simulation  software  packages.  These  are, however,  not  suitable  for  predictive  control.  The objective  of
this paper  is to share  the years-long  experience  of  the authors  in  building  modeling  intended  for  predic-
VAC control tive  control  of  the  building’s  climate.  We  provide  an  overview  of  identification  methods  for  buildings  and
analyze  their  applicability  for subsequent  predictive  control.  Moreover,  we  propose  a new  methodology
to obtain  a  model  suitable  for the  use in a  predictive  control  framework  combining  the building  energy
performance  simulation  tools  and  statistical  identification.  The  procedure  is  based  on the  so-called  co-
simulation  that  has  appeared  recently  as  a  feature  of various  building  simulation  software  packages.
. Introduction

.1. Motivation for advanced control in buildings

Building climate control has drawn a lot of attention in recent
ears in both academia and industry. Buildings account for 20–40%
f the total final energy consumption, and in the developed
ountries, the amount per year increases at a rate 0.5–5% [1].  In
ddition, the building sector is responsible for 33% of global CO2
missions. The savings related to buildings are therefore a natu-
al objective of many research groups. Apart from retrofitting and
odernization, one of the most popular current approaches is the

pplication of advanced control strategies to the building automa-
ion systems (BAS) or to some of their parts.

.2. Current control approaches, trends and possible

mprovements

Even though a number of advanced control solutions have been
uggested by researches, the most widely used method in building

� The results in paper were partly written during the visit at IfA, ETH Zurich.
∗ Corresponding author at: Department of Control Engineering, Faculty of Electri-

al  Engineering, Czech Technical University in Prague, Technická 2, 166 27 Praha 6,
zech Republic. Tel.: +420 776 697 672.

E-mail address: samuel.privara@fel.cvut.cz (S. Prívara).

378-7788/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.enbuild.2012.10.024
© 2012  Elsevier  B.V.  All  rights  reserved.

temperature control has been until recently a controller supervised
by heating-curve (HC) which require no model of the process (see
e.g. [2,3]). The respective subsystems of heating, ventilation, and air
conditioning (HVAC) are then controlled making use of rule-based
controllers (RBC, “if–then–else”) [4],  which are mainly responsi-
ble for a specific and space-limited area. On the level of the whole
building, there is no optimization (even though there are often
highly sophisticated local controllers). This is caused by extreme
complexity of the respective RBCs and the fact that it is practically
impossible to generalize their rules for the building level. This prob-
lem becomes even more severe in view of the rising complexity of
BAS tasks in modern office buildings.

One can distinguish two  main research directions in advanced
HVAC control (i) learning based approaches of artificial intelligence
(AI) like neural networks, genetic algorithms, fuzzy techniques,
support vector machines, etc. (ii) Model predictive control (MPC)
techniques that stand on the principles of classical control. Gener-
ally, learning based techniques are easier to implement (if lots of
on-site measurements are available) but the subsequent AI model
is not suitable for optimization, lacks a physical insight and does not
deal well with changes as caused by varying occupancy behavior
or physical changes in the building.
MPC  is a well established method for constrained control and
has also been in focus of researchers in the area of buildings
[5–9]. Among the first notes about MPC  for supervisory control of
a building was the work presented by [10], however, due to the

dx.doi.org/10.1016/j.enbuild.2012.10.024
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
mailto:samuel.privara@fel.cvut.cz
dx.doi.org/10.1016/j.enbuild.2012.10.024
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ig. 1. Number of papers devoted to MPC  in buildings in journals Energy and Build-
ngs, Building and Environment and Energy.

omputational demands, this framework has not received much
ttention until the past decade when MPC  was applied to various
ypes of buildings systems often using standard simulation tools.
he growing interest in the use of MPC  for buildings is well demon-
trated by Fig. 1. Lately, the concept of predictive control has found

 way to the practical applications as well [5,11,12].
MPC  opens up possibilities of exploiting thermal storage capaci-

ies. It makes use of prediction of future disturbances (internal gains
ue to people and equipment, weather, etc.) given requirements
uch as comfort ranges (single value set-points still remains possi-
le to set) for controlled variables. The control ranges (constraints)
re either known in advance or at least estimated for controlled
ariables, disturbances, control costs, etc.

.3. Dynamic model as a crucial part of MPC

Reliable predictions from the identified dynamic model are
rucial for a sound performance of MPC. It is a well-known fact
hat modeling and identification are the most difficult and time-
onsuming parts of the automation process as such [13], particu-
arly for predictive control. The basic conditions that each model
ntended for MPC  usage should satisfy are reasonable simplicity,

ell estimated system dynamics and steady-state properties as
ell as satisfactory prediction properties. These requirements do
ot need to be of the same quality on the whole frequency range,
ather they should comply with the quality requirements for the
ontrol-relevant frequency range (see e.g. [14–16]). The key ques-
ion therefore is what kind of model should be searched for?

Two basic paradigms to derive a total model of building dynam-
cs are at hand. The first one originated in HVAC engineering and
uilding automation communities, a “traditional” approach, which
ses knowledge of the structure and physical and material prop-
rties of a building. A detailed building model is then assembled
rom simple subsystems mutually physically interacting, making
se of computer aided modeling tools, e.g. Trnsys [17], EnergyPlus

18], ESP-r [19], etc. Their objective is to simulate the behavior of the
uilding, however, they do not provide an explicit model,1 thus can
e hardly classified into control oriented modeling approaches even

1 Note that in this context, we call a model explicit if there are mathematical
ormulas describing a state evolution, i.e. a set of differential or difference equations
s  available. Otherwise the model is called implicit. Notice that AI models are also
mplicit.
ildings 56 (2013) 8–22 9

though there is a challenging project GenOpt aiming at employing a
(predictive) control framework directly without the need of a sim-
ple model [20]. This is however very computationally demanding,
hardly scalable and therefore not further considered here.

An alternative is to use statistically based, i.e. data-driven
approaches, resulting in a model in an explicit form. We  must
emphasize that even physically-based parametric models are clas-
sified into statistically-based models here as the parameters are
identified using measured or simulated data.

Basically, following categories of building modeling techniques
suitable for predictive control that can be considered as statistical.

Subspacemethods(4SID)  [21] belong to the black-box identifi-
cation algorithms and provide a model in a state space form.

The main advantage of 4SID methods is their ability to han-
dle large amount of data. This was  demonstrated for instance in
the identification of a thermodynamic model of a small residential
building that was equipped with tens of wireless sensors collecting
temperatures, humidity and solar radiation [22]. 4SID methods
were also used for an identification of a university building: at first,
the authors compared prediction error methods with 4SID meth-
ods [23], then showed that a suitable identification experiment can
significantly increase quality of the resulting model [24] as the qual-
ity of input–output data is a key factor for 4SID methods. Further
on, 4SID algorithm was  also applied for the identification of a large
office building [25].

Predictionerrormethods(PEM) [26] are the most commonly
used statistical identification techniques. Their objective is to min-
imize one-step ahead prediction error by optimizing parameters of
a prespecified model structure.

Typically, autoregressive moving average with external input
(ARMAX) model structures are preferred. This structure is used for
modeling of a room temperature in office buildings as presented in
[27], the model is then used for real-time fault detection and con-
trol applications. In [28], several black-box model structures are
investigated for identification of the thermal behavior of a mod-
ern office building. The authors conclude that Box–Jenkins general
model results in the best prediction performance among the stud-
ied group.

PEM are simple-to-use methods that are, however, suitable
mainly for identification of single-input single-output (SISO)
systems. As the building systems are normally multiple-input
multiple-output (MIMO) systems, these methods have to be
carefully used. In [29], the authors show that modeling of air con-
ditioning process by multiple SISO ARMAX models of all system
components leads to poor performance compared to the proposed
MIMO  ARMAX counterpart.

MPCrelevantidentification(MRI) is an approach minimizing
multi-step ahead prediction errors [30–32].  The horizon for error
minimization commensurate with the prediction horizon of the
predictive controller.

A multi-step ahead prediction error cost function for selection
of a building model is examined in [33]. The authors adapts the
MRI  algorithm for usage on building data that are usually highly
correlated and then show that the proposed algorithm results out-
performs standard one-step ahead PEM methods.

Deterministicsemi − physicalmodeling(DSPM)  uses resistance
capacitance (RC) network analogue to an electric circuitry to
describe the process dynamics and is often referred to as a gray-box
modeling.

This approach was  presented in a wide variety of papers. Gray-
box technique is used to obtain a model of a university building in
[11]. With this model, the MPC  applied in a real operation saved

16–28% energy compared to the previous well-tuned conventional
control strategy. RC networks are also used by the leading projects
dealing with predictive control of buildings, i.e. UC Berkeley [5],
ETH Zurich [34], KU Leuven [6].
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Besides that, [35] shows how to use identification toolbox for
atlab [36] to estimate parameters of RC networks, while in [37],

he authors estimate building parameters using genetic algorithms
inimizing one-step prediction error. Detailed RC network for

hermally activated building systems (TABS) is presented in [38].
Probabilisticsemi − physicalmodeling(PSPM)  [39] utilizes

tochastic differential equations for the description of a system to
e identified. A hierarchy of models with increasing complexity is
ormulated based on prior physical knowledge, parameters of each

odel are estimated using the maximum likelihood (ML) method
nd a forward selection strategy is used to find a meaningful and
dequately complex model by an iterative process.

This technique is presented in a series of papers by [40,41], the
dditional statistical tests for the iterative procedure are proposed
n [42].

.4. The contribution and a structure of the paper

Following the discussion in the previous paragraphs, MPC  has
 potential to address the issue of energy consumption in build-
ngs as well as growing complexity of control requirements. The
rucial part of MPC  is the dynamic model. The objective of this
aper is to (i) present a review of methods applicable to the
uilding modeling intended for the predictive control and (ii)
ddress an issue of handling of the growing complexity of modern
uildings.

The paper continues with the following structure. The next sec-
ion is devoted to building modeling and identification approaches

 those well-known in control engineering community as well
s those originating from the community of building and civil
ngineers. Section 3 is devoted to a novel method combining a
uilding modeling software with a subsequent statistical identi-
cation. This approach can be conveniently used for large office
uildings. Section 4 presents two case studies: the first is an arti-
cial example of a simple, yet realistic building constructed in
rnsys environment, where the properties of several identification
pproaches are shown, while the second is a statistically-based
dentification of a large office building in Munich. To the best of
he authors’ knowledge, there was no detailed building model-
ng of such size intended for predictive control as is discussed
here. The last section contains final remarks and concludes the
aper.

.5. Notation

Throughout the paper R  denotes the set of reals, Z set of integers,
 ∈ R  the time while k ∈ Z is the discrete time, vectors u ∈ R

m, x ∈
n, y ∈ R

r stand for system input, state and output, respectively. The
ymbols w ∈ R

n and e ∈ R
r denote process and measurement noise

equences, respectively. The positive integer N stands for number
f identification data while P is the length of an MPC  prediction
orizon. Notation Zj

1 means that matrix Zj
1 is composed as Zj

1 =
z1, z2, . . . , zj]. The symbol (·)† stands for Moore–Penrose pseudo-
nverse of a matrix, whilst the symbol M̂ means the estimate of
uantity M.  The symbol Is stands for the identity matrix of size s.
inally, the symbols vec (•) and ⊗ denote the vectorization and the
ronecker product, respectively.

. Modeling and identification for buildings
In the following, two basic concepts for derivation of a building
odel are treated in detail. First, we deal with an approach using a

uilding simulation software, and thereafter we will have a look at
tatistically-based approaches.
ildings 56 (2013) 8–22

2.1. Physically-based models, simulation tools

Physically-based models are typically developed making use of
specialized computer aided modeling tools. The particular tool then
assembles the model from the provided information about building
structure and physical and material properties. A detailed building
model is then assembled from simple subsystems mutually physi-
cally interacting. Overall, the software packages are called building
energy performance simulation tools (BEPST).

2.1.1. Application of a building energy performance simulation
The building energy performance simulation has become an

important tool to assess the building’s energy consumption and
user comfort. In early design phases architects and designers mostly
use BEPST to compare performance of different design variants. The
simulation inputs are based on the designer’s experience since not
all design decisions are finalized yet. The building’s energy perfor-
mance simulated at these stages may  vary greatly from the actual
building’s energy performance once it is in operation. It is however
possible to deduce tendencies of expected performance of different
design solutions in early design stages.

Application of BEPST is not limited to the early design phases. In
more detailed design phases the building simulation is often used
to check the functionality of a proposed design and increase the
planning reliability. In addition, the building simulation is increas-
ingly employed to evaluate an absolute energy performance which
requires a greater level of detail for all energy consuming building
and plant components.

The level of detail for modeling HVAC plants depends on the
available building data. For gathering all the information needed
to model a building and its plants, a close cooperation of technical
consultants for architecture, HVAC and electrical and the building
owner is necessary. In early design phases, issues of building con-
trol are often postponed to detailed planning. Simulation engineers
thus often fall back on implementing standardized and simplified
control rules in their models.

2.1.2. Control in building energy performance simulation tools
Currently available BEPST have quite different control capabili-

ties. Typically, simulation tools provide thermostat and humidistat
control as well as pre-defined control strategies for system
availability and plant control. Because BEPTS use idealized approx-
imations, control in simulation tools performs more efficient and
stable as it might be in real-world applications. Thus, the calculated
building energy consumption is generally optimistic [43].

2.2. Statistically-based identification approaches

The building modeling approaches described in the following
are in-line with the short discussion from Section 1.3.

2.2.1. Subspace identification
Buildings usually have tens or even hundreds of rooms/zones

with a large number of actuators and sensors, what results in MIMO
model.

One of the most popular and successful methods for identifica-
tion of MIMO  systems is subspace state-space system identification
(4SID).

Problemstatement. The objective of the 4SID is to find matrices
A, B, C, D and K of a linear time-invariant (LTI) discrete-time model

in an innovative form:

xk+1 = Axk + Buk + Kek,

yk = Cxk + Duk + ek

(1)
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Table  1
Symbols and their meaning used for 4SID algorithm.

Symbol Meaning

Yp Hankel matrix of the past outputs
Yf Hankel matrix of the future outputs
Xp Hankel matrix of the past states
Xf Hankel matrix of the future states
Up Hankel matrix of the past inputs
Uf Hankel matrix of the future inputs
�i Extended observability matrix
Hd Markov parameter matrix corresponding to the deterministic

part
Hs Markov parameter matrix corresponding to the stochastic part
�d Reversed extended controllability matrix corresponding to the

deterministic part
�s Reversed extended controllability matrix corresponding to the

stochastic part
Ep Hankel matrix of the past noise
E Hankel matrix of the future noise
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yk = Cxk + Duk + ek.
(9)
f

i  Number of block rows in Hankel matrices

ased on given measurements of an input and an output generated
y an unknown stochastic system of order n subject to unknown
hite noise ek.

Algorithm. The entry point is the input–output equations:

Yp = �iXp + Hd
i
Up + Hs

i
Ep,

Yf = �iXf + Hd
i
Uf + Hs

i
Ef ,

(2)

f = AiXp + �d
i Up + �s

i Ep, (2)

here the symbols are defined in Table 1. Note that a very detailed
xplanation of the respective symbols, e.g. how the Hankel matrices
re constructed is provided in [21,44]. The basic idea of the algo-
ithm is to drop input and noise matrices by finding an appropriate
rojection and instrument matrices. The main tool of 4SID is an
blique projection defined as follows [21]:

 = Yf /
Uf

Wp = Yf

[
WT

p UT
f

][WpWT
p WpUT

f

Uf WT
p Uf UT

f

]† [
Ir

0

]
Wp, (3)

where Wp = (Up/Yp), i.e. the matrices of past inputs and outputs
re stacked onto each other. The equation basically represents the
rojection of future system outputs onto a space of past system

nputs. Then it can be shown [21] that Z = �X, where X is the
alman filter state sequence and � is state observability matrix.
he order of the system can be determined from an analysis of sin-
ular values obtained from a singular value decomposition (SVD)
f W1ZW2, where W1,2 are weighting matrices of an appropriate
ize which determine the resulting state space basis as well as the
mportance of the particular element of Z, see Eq. (8).

The algorithm continues from either � or X in a slightly different
anner depending on the particular subspace identification algo-

ithm, however, both ways lead to a computation of A and C by
rdinary least squares (OLS).

For selection of a submatrix we have adopted a Matlab-like nota-
ion, where A(1 : n, :) means, that the submatrix is obtained from
he original matrix A by taking 1 to n rows and all the columns. Then

ˆ
 = �(1 : r, :), (4a)

ˆ = �(1 : (i − 1) ∗ r, : )−1�(r + 1 : i ∗ r, :). (4b)
iven Â and Ĉ, the estimate of B and D (and an initial state x0) is per-
ormed in different ways [21,26,45–47]; here the general idea will
ildings 56 (2013) 8–22 11

be outlined. The system output equation of Eq. (1) can be written
as:

yk = CAkx0 +
k−1∑
j=0

CAk−j−1Buj + Duk + ek. (5)

Note that in this equation, the only unknowns are x0 and matrices
B and D. The rest of the terms are known or can be replaced by the
estimates. With aid of vectorization and Kronecker product, the
equation can be rewritten into a form of a least-squares problem.
For more details, consult [48].

Finally, given the estimates of A, B, C, D, the Kalman gain matrix
K can be computed solving the Algebraic Riccati Equation (ARE) in
which the covariance matrices Q, S and R:[

Q S

ST R

]
= 1

N

([
W

V

][
WT VT

])
(6)

are determined from the residuals as follows:[
W

V

]
=
[

Xk+1

Yk

]
−
[

Â B̂

Ĉ D̂

]  [
Xk

Uk

]
(7)

At last, a short note on choice of a system order is given. Two
possible approaches are at hand.

• The oblique projection matrix is decomposed by SVD and then
the system order is determined as a number of non-zero singular
values of  ̇ matrix in SVD(W1ZW2) = U˙VT ,

• In case of worse signal to noise ratio, the estimation of the
number of dominant singular values becomes cumbersome. An
alternative heuristic approach improving the order estimation is
suggested as:

f (�j) = grad log(�j) j = 1, . . . , i · r,

n = argmin
j

f (�j),
(8)

where �j are singular values of ˙.  Note that this heuristic can be
used in situations, when there is a low signal to noise ration, thus
the singular values are “drowned” in the noise.

Subspaceidentificationforbi − linearsystems. Some
phenomena in buildings cannot be modeled using linear physics
by their nature. These are, for instance, operation of ventilation
units [49] or the heat transmission through the windows [34].
The latter is caused by opening and closing the blinds (which can
be controlled by MPC). The effects of the blinds on the dynamics
can be modeled by splitting the heat transmission [34]. The first
part describes the heat transmission with closed blinds (constant),
whilst the second part describes the heat transmission with the
partially or fully opened blinds. This means, that for the partially
or fully opened blinds, the system state is multiplied by an input
u ∈ {0, 1}, which forms a bi-linear system description. A product
of mass flow rate and a temperature (to obtain a heat flux) results
in another example of a bi-linearity. Bi-linearities are treated in
detail in [5].

A possible solution is to use bi-linear subspace algorithm
(Bi4SID). The objective of Bi4SID is to find a bi-linear, time-
invariant, discrete time model in a form:

xk+1 = Axk + F (xk ⊗ uk) + Buk + wk,
The objective of the algorithm is to determine the system order
n and to find the matrices A, B, D, C and F up to some similarity
transformation.
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The biggest disadvantage of the Bi4SID is that the number
f rows of data matrices grows exponentially with the order of
he system [50,51]. This drawback was to a great extent over-
ome by kernel method [51,52],  where used kernel data matrices
ave smaller dimensions than those used in original bi-linear sub-
pace problem. As an alternative to the kernel method, the basic
LS problem has been reformulated as a Ridge regression prob-

em [52], where for solution the only kernel matrix is needed.
ven with these simplifications, Bi4SID are not yet applicable to
he real building as they are unable to process larger amounts of
ata.

.2.2. Prediction error methods
Prediction error methods [26] (PEM) are frequently used for

ystem identification and can be formulated as:

ˆ
 = argmin

�

N∑
k=1

�(εk(�)), (10)

here �(•) is an appropriate scalar-valued function, � is a vector of
arameters and εk a prediction error in time k, εk = yk − ŷk, with ŷk

enoting the output estimate. Typically, one-step ahead prediction
s to be minimized which uses past output data up to time k − 1
o obtain the estimate of yk. This is formally written as ŷk|k−1 =

 (Uk
1, Yk−1

1 ). The function f depends on the user’s choice of model
tructure (ARX, ARMAX, etc.).

.2.3. Model predictive control relevant identification
When building-up a model for MPC, we should think about

he minimization of the control error on the prediction horizon.
ence a model used for predictive control should be primar-

ly a sound multi-step predictor. Such methods, minimizing the
ulti-step prediction error, are collectively called MPC  rele-

ant identification methods (MRI) [32,53–55] and in some sense
xtend PEM. These methods are addressed in detail in the
ollowing.

Problemstatement. A possible formulation of a basic MPC  prob-
em can be as follows:

min
0,...,uP−1

P−1∑
k=0

(yref
k

− yk)T Qk(yref
k

− yk) + Rkuk, (11)

ubject to : x0 = x, (12)

k+1 = f (xk, uk), (13)

k = g(xk, uk), (14)

xk, uk, yk) ∈ Xk × Uk × Yk, (15)

here Xk, Uk and Yk denote the constraints sets of states, inputs and
utputs. Qk and Rk are time varying weighting matrices of appropri-
te dimensions. Based on Eq. (11), without penalization on control,
he MPC  cost function which penalizes the sum of the squared dif-
erences of the actual value of the controlled output yk and the
equired reference yref

k
during a prediction horizon can be rewritten
s:

MPC = 1
(N − P) P

N−P∑
k=1

P∑
i=1

(yref
k+i

− yk+i)
2 (16)

or buildings, P is typically chosen such that it corresponds to 48 h,
hile N is significantly larger. Next, yk+i = ŷk+i|k + ek+i|k, where

ˆk+i|k denotes the predicted output values at the time k + i using
ildings 56 (2013) 8–22

the data until k, ek+i|k is the i-step ahead prediction error. Eq. (16)
can be rewritten [53] as:

JMPC = 1
(N − P) P

N−P∑
k=1

P∑
i=1

(yref
k+i

− yk+i|k)2

+ 1
(N − P) P

N−P∑
k=1

P∑
i=1

(yk+i − ŷk+i|k)2

− 2
(N − P) P

N−P∑
k=1

P∑
i=1

(yref
k+i

− ŷk+i|k)(yk+i − ŷk+i|k). (17)

The MPC  itself minimizes only the first term. However, from
global perspective, to achieve the optimal solution it is necessary
minimize the remaining terms as well. The last term represents
the cross-correlation between the identification and control errors
and is treated by [56]. The second term in Eq. (17) will be used as an
identification loss function for MRI  and expresses the identification
error:

JMRI = 1
(N − P) P

N−P∑
k=1

P∑
i=1

‖ek+i|k‖2 = ‖Ea‖2, (18)

or with explicit dependence on estimated parameters as:

JMRI(�) = ‖Ea‖2 = ‖Ya − Za(�)�‖2 (19)

with

Ea =

⎡
⎢⎢⎣

Ea1

...

EaP

⎤
⎥⎥⎦ , Eai

=

⎡
⎢⎢⎣

e1+i|1

...

eN|N−i

⎤
⎥⎥⎦ , i = 1, . . . , P (20)

and similarly defined output matrix Y and regressor Z. The specific
form of regressor depends on the model used.

2.2.4. Estimation of ARX models
In case that AutoRegressive eXternal input (ARX) [26] model is

considered, the multi-step output prediction ŷk+i|k is expressed as:

ŷk+i|k = Zk+i�̂, i = 1, 2, . . . , P. (21)

where Zk+i = [uk+i−nk
, . . . , uk+i−nb

, yk+i−1, . . . , yk+i−na ] and �̂ =
[b̂nk

, . . . , b̂nb
, â1, . . . , âna ]T , nb and na are the numbers of lagged

inputs and outputs, nk represents the relative lag of outputs w.r.t.
to inputs. As the outputs yk0

in Zk+i with k0 > k are not available at k,
the output prediction ŷk0|k is obtained recursively from Eq. (21), i.e.
by an iterative use of one-step ahead predictions. Having formed
the Za and Ya according to Eq. (20), the problem can be solved by
available solvers minimizing Eq. (19).

2.2.5. Estimation of state space models
When minimizing Eq. (19) for MIMO  system, the use of the

state space representation is more convenient than e.g. ARX
parametrization. In the simplest case when all the states are mea-
surable, the relation between �̂ and system matrices A and B can
be expressed as:

� =
[

A

B

]
, (22)

that is, if all the states are measured (C is a unit matrix), matrices A

and B can be readily extracted from �̂.

The more difficult situation is for the case when some states are
not measured and the particular input and output pair is repre-
sented by a higher-order transfer function nb > 1 for the jth input.
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he basic idea is to introduce artificial outputs (by means of Aaux

nd Baux) and make thus all the states “measurable”. The respective
arameters are estimated by MRI  minimizing Eq. (19) using MIMO
RX structure.

Without loss of generality, let us assume that the output which
epends on the lagged input is the first one. Then nb − 1 auxiliary
ariables in matrices Aaux and Baux are introduced:

xno+1,k+1

...

xno+nb−1,k+1

⎤
⎥⎥⎦ = Aaux

⎡
⎢⎢⎣

xno+1,k

...

xno+nb−1,k

⎤
⎥⎥⎦+ Bauxu, (23)

here Aaux and Baux are in the following form:

aux =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 0
...

...
. . .

...

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦ , (24)

aux =

⎡
⎢⎢⎢⎣ 0j−1

⎡
⎢⎢⎢⎣

0
...

0

1

⎤
⎥⎥⎥⎦ 0ni−j

⎤
⎥⎥⎥⎦ , (25)

ith 0j−1 and 0ni−j being appropriate size zero matrices and ni
nd no being number of inputs and outputs, respectively. Then, the
ystem matrices A, B can be expressed as:

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A

⎡
⎢⎢⎢⎢⎣

bnb,j bnb−1,j · · · b2,j

0 0 · · · 0
...

. . .
...

0 ·  · · 0

⎤
⎥⎥⎥⎥⎦

0 Aaux

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =
[

B

Baux

]
(26)

ith A and B in Eq. (26) computed analogously to Eq. (22) leaving
ut the coefficients corresponding to the influence of the lagged
nput (this is equivalent to na = nb = 1). The skipped coefficients are
tored in the last nb − 1 elements of the first row of A. Note that j
enotes the lagged input channel. Similar procedure is used in the
ase when more than one output is affected by the lagged input.
atrix C is a matrix with as many rows as system outputs (origi-

al, without artificial outputs created by introducing the auxiliary
tates) and as many columns as system states. Matrix D is a zero
atrix.

.2.6. Deterministic semi-physical modeling
As already stated, DSPM uses RC network analogue to electric

ircuitry to describe internal workings. To detail this approach,
e first need to consider all kinds of heat transfers to assemble

 detailed first principles model.
Conduction is a heat transfer through walls (solid body)

xpressed as [57]:

˙ 2 ≈ T1 − T2

kcd
≈ Q̇

kcd
, (27)
here T1 is a temperature of a source, T2 is a measured temperature
f some entity, Q̇ is a heat flux and kcd stands for the conduction
ime constant of a process (R × C with R and C being the thermal
esistance and capacity of a mass).
ildings 56 (2013) 8–22 13

Convection is a heat transfer through air (liquid) expressed as:

Ṫ2 ≈ T1 − T2

kcv
· 4

√
T1 − T2

T1 + T2
(28)

with a time constant kcv. Eq. (28) can also be approximated by Ṫ2 ≈
(T1 − T2)/Kcv as 4

√
(T1 − T2)/(T1 + T2) is considered constant for a

building heating process [57].
Radiation corresponds (similar as a convection) to a heat trans-

fer through air and is expressed as:

Ṫ2 ≈ T4
1 − T4

2
kra

(29)

with time constant kra.
Based on the simplified equations for all heat transfers, dif-

ferential equations can be formulated for all states/nodes. This is
schematically outlined in Fig. 2. Control actions are introduced in
two ways. The first one involves simply adding a heating or cool-
ing input to the particular room node, which then appears in the
right-hand side of above mentioned equations. The second way of
introducing control actions is by assuming that some resistances
are variable. For example, solar heat gains and luminous fluxes
through windows are assumed to vary in a linear fashion with
a blind position, i.e. the corresponding resistance was multiplied
with an input u = {0, 1}. This leads to a bi-linear model, i.e. bi-linear
in a state and input and a disturbance and input as well.

Now we  will briefly outline a simple procedure how to estimate
parameters of a RC network. Other procedures exist and are usually
based on the computationally demanding parameter estimation
of differential equations that are solved by sequential quadratic
programming. We  rather present numerically simple and stable
procedure based on least squares technique. The procedure was
firstly used by [11].

DSPMestimationprocedure. Having described a physics of a
building by a set of differential equations, the estimation problem is
formulated in the continuous time. Most of the mathematical tools,
however, work with discrete-time counterparts, therefore the orig-
inal continuous-time problem must be reformulated to a discrete
world, e.g. as:

A = eAcTs = In + AcTs + A2
c T2

s

2
+ . . . ≈ In + AcTs,

B =
∫ Ts

0

eAc	d	 ≈
∫ Ts

0

Ind	Bc = TsBc,

where Ac, Bc and A, B are model matrices of continuous- and
discrete-time models, respectively. Ts stands for a sampling
time. This corresponds to the Euler’s discretization, thus can be
applied for non-linear systems as well. Then the state equation
xk+1 = Axk + Buk + ek developed over the time can be written as:

XN
2 = AXN−1

1 + BUN−1
1 + EN−1

1 = (30)

=
[

A B
][XN−1

1

UN−1
1

]
+ EN−1

1 (30)

For standard optimization using OLS, Eq. (30) is rewritten as:

vecXN
2 =

([
XN−1

1

UN−1
1

]
⊗ In

)T

vec
[

A B
]

+ vecEN−1
1 .
Extra lines for a structure preservation of A and B as well as
other required constraints can be added into the regressor matrix
and the left-hand side matrix. Then, the unknown parameters are
estimated using a weighted LS technique.
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model quality but such experiments can be quite expensive [11].
In addition, the more system inputs, the longer the necessary
Fig. 2. RC network rep

.2.7. Probabilistic semi-physical modeling
Ubiquitous noise and non-linearities in the identification data

hat cannot be modeled using RC networks can be partly com-
ensated by introduction of noise additively entering system state
process noise w) and affecting measurement (measurement noise
). Hence, the RC network gets the form of a stochastic differen-
ial equation. Model parameters can then be estimated using ML
echnique as

∗
ML = argmax

�
{ln(L(�, YN

1 |y0))}, (31)

(�, YN
1 |y0) =

N∏
k=1

exp(−1/2εT
k
R−1

k|k−1εk)(√
2

)r√

det(Rk|k−1)
p(y0|�) (31)

ncluding a prior knowledge of the system. Following the standard
otation, L is a likelihood function, y0 is the vector of initial con-
itions, � is the vector of unknown parameters, p(y0|�) is the
onditional probability of initial conditions on parameters, εk are
esiduals and Rk|k−1 is a residual covariance matrix. It must be noted
ere, that the problem can be solved only in an iterative manner,
hen εk and Rk|k−1 are computed given an estimate �̂  of �. How-

ver, to compute �̂,  the knowledge of the noise properties must be
ssumed. The estimation of both parameters and covariance matrix
s performed using the expectation maximization (EM) algorithm
58,59].

The above-mentioned procedure is iterative and interactive at
he same time. Basically, at each step a model designer specify a
entative model structure M with several unknown parameters:

 ︸︸  ︷
xt = x0 +

∫ t

t0

m(	, x, u, p(c, �))d	 +
∫ t

t0

�(	, p(c, �))dˇ,

ytk
= h(tk, x, u, p(c, �)) + R(tk, p(c, �))w(tk),

M

here  ̌ is the Wiener process, y is the vector of output measure-
ents. p(c, �) represents all the known and unknown parameters
ith c and � being known constants and unknown parameters to

e estimated, respectively; w(tk) is the Gaussian zero-mean white
ting a building model.

noise with unit variance scaled arbitrary by R(tk, p(c, �)). Note
that tk are not necessarily uniformly spaced sampling instances.
The parameter optimization then takes place and terminates when
the tentative model gives a statistically relevant output response.
If there are no such parameter values, the model is rejected and
user should specify a different model. However the user can also
refine the already accepted model by adding or removing a cer-
tain component. This provides a considerable freedom to control
a complexity of the model and gives user a way to find as simple
model as possible. The procedure is already implemented in CTSM
software. 2 A significant advantage of this method is that impor-
tance of adding the parameters can be tested by standard statistical
tests, e.g. likelihood-ratio tests [61]. The biggest disadvantage of
this method is its computational complexity and inability of hand-
ling larger amounts of data.

2.3. Comparison of the identification approaches

Finally, Table 2 summarizes the MPC  applicability of above men-
tioned approaches from various viewpoints.

3. Co-simulation based building modeling

In this section we  present a methodology how to utilize BEPST
to obtain an LTI model for control. The motivation is the following:

• Data collected from the real operation of a building nearly
always violate conditions under which the statistical identifica-
tion techniques estimate models reliably. The main issues are the
persistent excitation and the closed-loop nature of the identifi-
cation data.

• A suitable identification experiment can significantly increase the
experiment time which leads to additional costs.

2 Continuous-time stochastic modeling [60]
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Table  2
Comparison of the identification/modeling approaches.

Building simulation
software modeling

RC modeling –
tabular data driven

Deterministic and
stochastic semi-physical
modeling

Subspace
identification

Model predictive
control relevant
identification

Planning data from architects and engineers need Yes Yes No No No
Operation data need No No Yes Yes Yes
HVAC  engineering background needed Yes Yes No No Yes
Result  is achieved in defined time Yes Yes No No No
Use  of prior information about building Yes Yes Yes No Yes

s
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Three different kinds of input signals can be considered; pseudo-
random binary signal (PRBS), sum of sinusoids (SINE) and multilevel
pseudo-random signal (MPRS). Let 	H, 	L denote the slowest and the
fastest time constants of a system, respectively. Then the frequency
Continuous model update No No
MPC  applicable No Ye
Estimation procedure computational complexity – – 

In real operation, temperature signals suffer from a co-linearity.
Physically, this means that the temperatures in the building
are very similar in time and make the estimation problem ill-
conditioned. Moreover, in case of MIMO  systems, this can even
lead to wrong input–output coupling in the resulting model.

t is therefore desirable to use BEPST not only for validation of
he resulting controller, but for the identification data generator
s well. An arbitrary experiment with no financial cost can then be
erformed in order to achieve a model of a desirable quality. More-
ver, the complexity of the model can be controlled, e.g. by means
f an examination which sensor is important for the model and
hich is not. If the BEPST model is a true copy of the real building

hen the resulting LTI model describes the real building sufficiently
recisely.

.1. Coupling control and building simulation

Even though BEPST are open for custom model adaptation, the
exibility of the tools is still limited – since they were developed
nd optimized for a building energy performance simulation in
he first place. In order to enhance flexibility and combine simu-
ation tools of different emphasis (such as building performance
nd control), a co-simulation becomes more and more important.
o-simulation describes the integration of different tools by run-
ime coupling. This allows for example to couple building energy
erformance simulation tools to Matlab, thus provides new pos-
ibilities to building simulation. Co-simulation fundamentals for
uilding simulation such as coupling strategies and data transfer
re described in [62].

Run-time coupling allows for example simulation assisted con-
rol. Different fields of application of building simulation tools
oncerning building control were defined by [63]:

Used as an emulator, the simulation tool replaces the building and
its plants. BEPST is given input by the simulation. This approach
can be used for control product development, tuning control
equipment, fault-detection amongst other applications.
Used as evaluator, the building simulation tool provides a detailed
building and plant model for evaluation of different control
strategies, evaluation criteria being energy performance and user
comfort.
Coupling the building simulation tools to the BEPST simulation
assisted control is feasible. The building simulation tool becomes
part of the controller and is used to evaluate control scenarios for
each control task before control actions are applied on the actual
building.
Yet another field of application for co-simulation is a develop-
ent and testing the MPC. Currently, many BEPST already feature

nterfaces to other tools:
Yes No No
Yes Yes Yes
Medium Low High

• Trnsys allows coupling with Matlab on Windows platforms mak-
ing use of Type155.

• Extensive capabilities for coupling simulation tools are provided
by the Building Controls Virtual Testbed (BCVTB) which is devel-
oped by the Lawrence Berkeley National Laboratory [64]. BCVTB
is a middle-ware tool that allows to couple different simulation
programs for distributed simulation. Programs that can be linked
via the BCVTB are EnergyPlus (EP), Matlab/Simulink, Dymola and
Radiance. Data exchange with BACnet building automation sys-
tems is also featured.

3.2. Combined procedure

In this procedure, we combine benefits of both approaches, i.e.
we use BEPST for identification experiments to get input–output
data and then we use statistically-based algorithm to identify LTI
model from the generated data.

The whole procedure of getting a building model is described in
the following steps. Note that in the following discussion, we  con-
sider use of EP only, however, an arbitrary simulation tool featuring
co-simulation and providing an implicit model can be used.

3.2.1. Choice of model inputs and outputs
The choice of model inputs and outputs plays an important role

for the particular identification procedure. They must be chosen so
that the resulting underlying physics is linear. The specific selection
of the system inputs and outputs is provided in the second case
study of Section 4.

3.2.2. Data preparation and system identification
High quality data needed for a system identification (SID) can be

obtained as an output of the EP model provided the model is excited
by specially designed inputs. The main task of the generator of EP
inputs (GenEI, see Fig. 3) is a generation of sufficiently exciting input
signals.
Fig. 3. Preparation of data for identification.
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pectrum to cover is (ω*, ω*) with ω* = 1/ˇ	H ≤ ω ≤ ˛/	L = ω*, where
 defines how fast is a closed loop w.r.t. an open loop response.

 specifies a low frequency information corresponding to a sett-
ing time. Typical values are  ̨ = 2 and  ̌ = 3, which corresponds to
5% of the settling time [65]. In case of MPRS, an input sequence is
omputed by Galoise fields [65] with the number of shift registers

 and a length q, which defines the maximum possible multiple of
armonics to suppress. Or, in the opposite direction, let h be a max-

mum possible multiple of harmonics to suppress, then q must be
hosen so that q ≥ 2h − 1 holds and c is computed from

∗ ≥ 2


Ts(qn − 1)
. (32)

he length of a signal cycle is Ncyc = qc − 1, which (in a time domain)
epresents a signal of duration Tcyc = Ncyc . Ts. The number d of sig-
als to be generated does not need to be considered, as it is sufficient
o generate a single signal and shift it (d − 1) times, which guaran-
ees good statistical properties of the generated signals [66].

Both the generated EP inputs and weather predictions are
rocessed by EP to produce EP outputs. To have a complete set
f inputs and outputs for SID, we need EP outputs, some variables
rom schedules (e.g. building’s internal gains, equipment gains) and
atabases (weather predictions) that are processed by a software
lock written in Matlab (GenSIO, see Fig. 3).

Finally, having inputs and outputs ready, a SID algorithm is per-
ormed to obtain a linear time-invariant model.

. Case studies

We will discuss here two examples of buildings with completely
ifferent structure and complexity. Both of them will demonstrate
he properties of the co-simulation based procedure from Section
. The first one deals with a large office building that is modeled
sing EP and due to the model complexity, 4SID identification tech-
ique is the only option to get LTI model, whilst the second example

s an artificial building constructed in Trnsys environment, where
he performance of all identification approaches from Section 2 but
SID is investigated.

For evaluation of a model quality we will use a normalized root
ean square error (NRMSE) fitness value defined as:

( ∥∥yk − ŷk

∥∥
2

)

RMSEfit = 1 − ∥∥yk − E(yk)

∥∥
2

100 %, (33)

here E stands for the expected value operator.

ig. 4. Office building in Munich. (a) 3D simulation model: investigated zones are on the t
or  clarity. The zones of the same sub-system are colored alike. Core areas are gray. (b) A 
ildings 56 (2013) 8–22

4.1. Example I: a large office building in Munich

4.1.1. Building description
The building under investigation is a large office building in

Munich (20 000 m2, six above-ground floors, see Fig. 4(a) and (b)).
The objective of the identification is the 3rd floor with an area of
approximately 2800 m2. Based on a usage, a faç ade orientation and
a HVAC supply, the floor can be divided into 24 mutually intercon-
nected zones. The faç ade of the building has a window-to-wall ratio
of approx. 70%. Faç ades to the atrium have a glazing ratio of approx.
50%. Roughly 50% of the windows have interior blinds, remaining
blinds are in-between-glass blinds of double windows.

The building automation system contains several actuators:
individually controlled convectors, 24 independently controlled
radiant ceiling panels for cooling and heating, two  air handling
units (AHU) for control of the ventilation, and Venetian blinds for
all windows in all zones. Energy supply, i.e. hot and chilled water
supply for the entire building, is provided by a central heating and
a cooling plant, which is located partly in the basement and partly
on the roof. District heating is used for the building’s heat supply.
Chilled water is provided locally by mechanical chillers. We  will
now follow the steps from Section 3.

4.1.2. Building modeling
Choiceofmodelingstrategy, inputsandoutputs. Following the

discussion in Section 3 we  selected the heat fluxes affecting zone
temperatures for system inputs and temperatures and illuminances
for system outputs to obtain an LTI model. The selection resulted in
288 inputs and 48 outputs lumped into the variable categories as
described in Table 3. Note that some inputs are common for multi-
ple zones, while others are unique for respective zones. Signals, that
are common for multiple zones are marked by ‘No’ in the column
‘Zone relevant’ of Table 3. Signals marked by ‘Yes’ are unique for
each single zone and therefore each category has as many signals as
zones (E.g. there are 16 convectors for 24 zones, therefore variable
category QCONV contains 16 signals.). Moreover, all the variables are
inputs/outputs/disturbances of the LTI model (model produced by
SID). These are not necessarily the same as those of EP (remember a
use of GenSIO from Section 3.2.2), which is indicated in the column
EP equivalent.

Excitationsignals. The fastest and the slowest time constants
are 4 h and 20 days, respectively. The minimum necessary length
of the experiment as well as a suitable sampling time and addi-
tional settings are obtained from the aforementioned technique
(see Section 3.2.2) for the excitation signal generation. Apart from

the frequency properties there exist further requirements on the
properties of the input signal such as minimum and maximum
values, a maximum possible step or a mutual exclusivity of some
signals.

hird floor, other floors are grayed out. The zone layout is shown on top of the model
photo of the building shortly before opening.
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Table  3
Notation of the variables used for system identification.

ID Variable category Type Zone relevant EP equivalent

QCONV Convector heating rate Input Yes Same quantity, power can be arbitrarily set within limits
ZCPCR Zone ceiling panel cooling rate Input Yes Supply water temperature and mass flow rate through plumbing

can  be adjusted. Together with return water temperature, they
stand for heat flux of radiant ceiling

ZCPHR Zone ceiling panel heating rate Input Yes Same as ZCPCR
LG  Lighting gains Input Yes Same quantity, power can be arbitrarily set within limits
NRF  Net radiation flux Disturbance Yes Partly by means of blinds control
FP Fan  power Input Yes Air flow rate (which is either 55 or 0 m3/h) and supply air

temperature. Together with return air temperature, they stand for
heat flux of fans.

ODBT Outdoor dry bulb temperature Disturbance No Same quantity
EG  Equipment gains Disturbance Yes Same quantity
OG  Occupancy gains Disturbance Yes Same quantity
ZT Zone  temperature Output Yes Same quantity
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ZI  Zone interior illuminance Output Yes

After analysis of a frequency response of the system, PRBS was
hosen as the most convenient excitation input signal from the
nvestigated group. Its advantage compared to SINE input signal is
hat it covers the whole frequency interval (frequency spectrum of
INE signal is not continuous) and compared to MPRS is the speed
f its generation (milliseconds in case of PRBS, minutes or even
ours depending on the number of inputs and signal length in case
f MPRS).

In case of unknown processes and non-linearities in the system,
he best choice is to use PRBS for the first shoot and then analyze
ystem frequency response because MPRS has clearly delimited fre-
uency spectrum and some of system modes might not be properly
xcited.

AnalysisofthelinearityofEPmodel. In Section 3.2.2 we have dis-
ussed an importance of a linearity of the underlying physics of the
rocess to allow the use of the 4SID algorithm. Hence we need to
erify linearity of the data produced by EP, which can be performed
ccording to a definition, i.e.

f (x1) + ˇf (x2) = f (˛x1 + ˇx2). (34)

his means, that independent inputs (e.g. convectors in Fig. 5(a)
nd (b) lower figures, and equipment and lightning gains Fig. 6(a)
ower figure) are fed into EP and the sum of corresponding outputs
s compared to the response of EP to the sum of the same inputs. The
esults can be seen in Fig. 5(c) and (d) for convectors, equipment
nd lightning gains, respectively. The errors between the responses
re summarized in Table 4. The growing error in case of a multiple
tep in input signals can be explained as follows. Linearity tests
ere intentionally performed at two different outside tempera-

ures, namely 15 ◦C and 20 ◦C. The actual zone temperatures are
 bit different due to the heat flux (from/to measured zones), i.e.
ss − Qcool(Tz) = QEP. Qss denotes here the heat flux corresponding to

he designed input (e.g. convectors), Qcool(Tz) is a flux altering (an
ctual size depends on the temperature difference between outside

nd zone temperatures) the requested value and QEP is a real value
f the flux affecting EP. When summing-up two signals of a differ-
nt step size, there is a different alternation by Qcool(Tz), hence a
mall difference between the sum of responses and a response of

able 4
emperature linearity error.

Errors in % EG LG QCONV

15 ◦C outside 20 ◦C outside

2nd step 3.9 2.1 4.4 5.2
3rd  step 3.3 1.0 3.4 5.0
Same quantity

the sums. Nevertheless, it can be concluded, that EP response on
selected inputs is indeed linear.

Settingsoftheidentificationprocedure. Final step is the choice of
parameters for the SID, namely identification algorithm, desired
model order and size of the Hankel matrices.

1. Identification algorithm: There are several algorithms covered
by 4SID, which differ in, for instance, applicability, numerical
stability and computational demands [21]. For our case, N4SID
was selected.

2. Desired model order: Although the order selection has already
been implemented in N4SID, an insight into a building physics
can help. A physically based order selection leads to a 2nd–3rd
order dynamics per output temperature [57] leading thus to the
order between 48 and 72 for 24 zones. After employing N4SID
algorithm and validation tests, 72th order model (order selection
according to an algorithm Eq. (8))  turned out to be indeed a good
choice, considering both its simplicity and sufficient precision.

3. Size of Hankel matrices is given by the number i of block rows,
Section 2.2.1, i > n, where n is a system order to identify [21].
Essentially, i means how far into the past/future of the measured
data is searched. It may  therefore seems that bigger i leads to a
better result. However, one should not forget, that the size of the
system matrices grows considerably with the system size and i
must be therefore a trade-off between computation difficulties
and the size of a “memory window”.

Several values of i were examined experimentally and the
results for step responses to several inputs for i = 24, 30, 36 and
40 are depicted in Fig. 7. All step responses recorded satisfactory
results as far as reliable dynamics, a sign of the effect and nom-
inal value is of concern. The increase of i leads only to DC-gains
change. Next, the measured step responses were analyzed. It
turned out, that with bigger i the model step responses approach
to the measured step responses (see Fig. 8). Because of the com-
putational limitations, the i = 40 has been selected as a suitable
choice for the size of Hankel matrices.

Predictionproperties. The good prediction properties of the
identified model are crucial for predictive controller. For com-
parison of the predictions for various prediction horizon refer to
Figs. 9 and 10.  It can be seen, that the model has satisfactory pre-
diction properties even for larger horizons.
4.2. Example II: artificial building modeled in Trnsys

In the second example, we will consider a small building
modeled in Trnsys environment. As mentioned before, the
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Fig. 5. Convectors: test of linearity of the EP model. (a) Two  convectors: input sig-
nals at outside temperature 15 ◦C and the EP model response. (b) Two  convectors:
input signals at outside temperature 20 ◦C and the EP model response. (c) Sum of
t ◦

(
a
r

c
u

4

i

Fig. 6. Equipment and lightning gains: test of the EP model linearity. (a) Two con-
◦

wo  convectors: input signal at outside temperature 15 C and EP model response
response of sum and sum of responses). (d) Sum of two  convectors: input signal
t  outside temperature 20 ◦C and EP model response (response of sum and sum of
esponses).

urrent system identification techniques from Section 2 can be
sed.
.2.1. Building description
A building, schematically outlined in Fig. 11,  was constructed

n Trnsys environment. It is a medium weight office building with
vectors: input signals at outside temperature 15 C and the EP model response. (b)
Sum  of signals: input signals at outside temperature 20 ◦C.

two zones (5 m × 5m × 3 m)  separated by a concrete wall (involving
the transient properties between zones). South oriented walls of
the zones include a window (3.75 m2). The HVAC system used in
the building is TABS [67]. Technically, a set of pipes is placed in the
ceiling and distributes supply water which then performs a thermal
exchange with a concrete core. Each zone has a unique heating
circuit with a constant mass flow rate of the supply water leaving
thus a supply water temperature the only manipulated variable.
This control strategy was chosen to mimic  a real-life application
[12], where there are no valves, thus no possibility of control the
fluxes.

We employed several Trnsys components such as (i) Type56 for
a construction of the building, (ii) Type15 for outside environmen-
tal conditions (involving ambient temperature, outside air relative
humidity and solar characteristic) with year weather profile corre-
sponding to Prague, Czech Republic, (iii) Type155 to establish a link
between Trnsys and Matlab.

The communication link was  used to generate identification
data in order to excite the system properly. Based on the previous
discussion, PRBS was  used as an excitation input signal. Time-step
of the simulation was set to Ts = 0.25 h which guarantees a proper
convergence of Trnsys internal algorithms and is also suitable for a
description of important building dynamics.

4.2.2. Building modeling
Choiceofmodelingstrategy, inputsandoutputs. The model built

in Trnsys has 18 states and 12 inputs (manipulated variables and
disturbances). We applied an iterative procedure for selection of

a minimum input and state sets [42]. The procedure iteratively
selects only those inputs and states which brings statistically sig-
nificant information to the model. Finally, we  obtained 4 out of
original 12 inputs (8 disturbances were proven not be significant),
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Fig. 7. Step responses of several inputs in zone 1 for different is. Vertical axes are particular contributions to zone temperatures.
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ote that the table presents only those states that are depicted in
ig. 11.
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Identificationproceduresused. We  are now ready to investigate

the applicability of the methods from Section 2. As the investigated
building is a small, more computationally demanding identification
techniques can be used.
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Fig. 11. A scheme of the modeled building.

Table 5
System states, inputs and measured disturbances.

Notation Description

(a) System inputs and measured disturbances
Tsw1 Supply water temperature, zone 1
Tsw2 Supply water temperature, zone 2
To Ambient temperature
Q̇ Solar radiation

(b) System states
Tc1 Ceiling core temperature, zone 1
Twall1

Core temperature of common wall, zone 1
Ts1 Core temperature on south side, inside, zone 1
Tw1 Core temperature on west side, inside, zone 1
Tn1 Core temperature on north side, inside, zone 1
Tz1 Zone temperature, zone 1
Tc2 Ceiling core temperature, zone 2
Twall2

Core temperature of common wall, zone 2
Ts2 Core temperature on south side, inside, zone 2
Te2 Core temperature on east side, inside, zone 2
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Fig. 12. NMRSEfit for different methods (MRI, DSPM, PSPM) and different prediction
horizons (4, 15, 48 steps and open loop, each step is 15 min).
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For MRI  and DSPM, we consider a model of the following form

(z) = G(z)u(z) + H(z)e(z), (35)

ith G(z) and H(z) transfer functions corresponding to a determi-
istic and a stochastic3 part of the system. A state-space model will
e use for case of PSPM as:

xt = (A(�)xt + B(�)ut)dt + �(�)dωt, (36)

t = C(�)xt + D(�)ut + et, (37)

here � ∈ � ⊂ R
p is the vector of parameters, ωt is the

-dimensional Wiener process and et∼N(0,  S(�)) is a white zero-
ean Gaussian noise and A(•), B(•), �(•), C(•), D(•) and S(•) are

ppropriate system parametric matrices.
Predictionproperties. The performance of the respective meth-

ds is evaluated using NRMSEfit and is summarized in Fig. 12.
o show the properties of the identification methods, Fig. 12
epicts results which correspond only to the deterministic trans-
er function. A comparison of measured and predicted outputs
for deterministic transfer function only) obtained from models of
ifferent approaches for 15 steps-ahead prediction is depicted in
ig. 13.  These results are presented for one zone, however, they are
lmost identical to the other zone which is not presented due to

pace reasons. Note that 4 step-ahead predictions for all methods
ecorded NRMSEfit over 96% even without stochastic part which can
e considered as excellent. The growing error with larger horizons

3 Note that H(z) includes non-linearities of a detailed Trnsys model which cannot
e  described by a linearized model.

0 5 10 15 20

−0.2

Frequency [4/h]

Fig. 14. Autocorrelation function of residuals of predicted output. The red horizontal
lines correspond to 5% significance level. (For interpretation of the references to color
in  this figure legend, the reader is referred to the web version of the article.)
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s caused by non-linearities of the underlying physics, which are
umped in a stochastic part (H(z)).

Validationofmodels. To evaluate the validity of the models we
ave used several tests applied to model residuals, namely (i) test of
utoRegressive (AR) process order, for details refer to [68,69] and

ii) tests using partial autocorrelation function (PACF) and cumula-
ive periodogram [70].

All the tests confirmed the whiteness of the residuals for all three
dentification approaches, for visual results refer to Figs. 14 and 15.
t can be seen, that the residuals are well within the confidence
ntervals corresponding to the 5% significance level.

. Concluding remarks

Apart from a detailed overview of modeling approaches and
lgorithms suitable for a predictive control, two case studies
ere presented. The first was a real-life example of a large office

uilding in Munich where a new procedure combining an implicit
odel built in EnergyPlus and a subsequent statistical identifica-

ion, namely 4SID algorithm, was presented. For large buildings
ith a complex structure, the only viable option seems to be

tatistically-based algorithms which are inherently capable of
reating MIMO  systems. The biggest disadvantage of 4SID is that
t does not preserve a physical structure during modeling phase,

hich causes deteriorating predictions for the larger horizon.
The second example of an artificial building modeled in Trnsys

emonstrated that use of a number of identification approaches
MRI, DSPM, PSPM) led to the very similar results. These meth-
ds make use of a known system structure and estimate system
arameters. This property ensures appropriate prediction proper-
ies even for longer prediction horizon. On the other hand, time
emands and a computational complexity become the issue for
hese methods in two ways. (i) With a growing complexity of a pro-
ess (building), a description becomes difficult to follow pointing
hus to 4SID as the only suitable candidate. (ii) Use of a probabilistic
emi-physical modeling and MRIs for large datasets and/or complex
ystems becomes computationally infeasible.
Therefore, the methods that make use of a physical description
f a system should be used primarily for buildings with simpler
tructure.

[
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Note that not all the BEPST as introduced in Section 2.1 can be
used in co-simulation as not all of them posses the capability of
the co-simulation. Building modeling tools Trnsys and EnergyPlus
were used to mimic  the behavior of a modelled building. All the
presented models are in explicit form with reasonable prediction
properties suitable for predictive control.
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33] E. Žáčeková, S. Prívara, Z. Váňa, Model predictive control relevant identification
using partial least squares for building modeling, in: IEEE Australian Control
Conference (AUCC), 2011, pp. 422–427.

34] D. Gyalistras, M.  Gwerder, Use of weather and occupancy forecasts for optimal
building climate control (opticontrol): two years progress report, Tech. Rep.,
Terrestrial Systems Ecology ETH Zurich, Switzerland and Building Technologies
Division, Siemens Switzerland Ltd., Zug, Switzerland, 2010.

35] M. Jimenez, H. Madsen, K. Andersen, Identification of the main thermal char-
acteristics of building components using MATLAB, Building and Environment
43  (2) (2008) 170–180.

36] L. Ljung, MATLAB: System Identification Toolbox: User’s Guide Version 4, The
Mathworks, 1995.

37] S. Wang, X. Xu, Simplified building model for transient thermal performance
estimation using GA-based parameter identification, International Journal of
Thermal Sciences 45 (4) (2006) 419–432.

38] M. Gwerder, B. Lehmann, J. Tödtli, V. Dorer, F. Renggli, Control of thermally-
activated building systems (TABS), Applied Energy 85 (7) (2008) 565–581.

39] T. Bohlin, S. Graebe, Issues in nonlinear stochastic grey box identification,
International Journal of Adaptive Control and Signal Processing 9 (6) (2007)
465–490.

40] P. Bacher, H. Madsen, Identifying suitable models for the heat dynamics of
buildings, Energy and Buildings 43 (7) (2011) 1511–1522.

41] K. Andersen, H. Madsen, L. Hansen, Modelling the heat dynamics of a build-
ing using stochastic differential equations, Energy and Buildings 31 (1) (2000)
13–24.
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62] M.  Trčka, J. Hensen, M.  Wetter, Co-simulation of innovative integrated HVAC
systems in buildings, Journal of Building Performance Simulation 2 (3) (2009)
209–230.

63] J. Clarke, J. Cockroft, S. Conner, J. Hand, N. Kelly, R. Moore, T. O’Brien, P. Strachan,
Control in building energy management systems: the role of simulation, in:
Proc. 7th International IBPSA Conf., Rio de Janeiro, Brazil, 2001, pp. 99–108.

64] M.  Wetter, Co-simulation of building energy and control systems with the
building controls virtual test bed, Journal of Building Performance Simulation
4  (3) (2011) 185–203, http://dx.doi.org/10.1080/19401493.2010.518631.

65] M. Braun, D. Rivera, A. Stenman, W.  Foslien, C. Hrenya, Multi-level pseudo-
random signal design and “model-on-demand” estimation applied
to  nonlinear identification of a rtp wafer reactor, in: Proceedings
of  the American Control Conference, vol. 3, 1999, pp. 1573–1577,
http://dx.doi.org/10.1109/ACC.1999.786090.

66] S. Gaikwad, D. Rivera, Control-relevant Input Signal Design for Multivariable
System Identification: Application to High-purity Distillation, 1996.

67] B. Lehmann, V. Dorer, M.  Koschenz, Application range of thermally activated
building systems tabs, Energy and Buildings 39 (5) (2007) 593–598.

68] T. Pukkila, P. Krishnaiah, On the use of autoregressive order deter-
mination criteria in multivariate white noise tests, IEEE Transactions
on Acoustics Speech and Signal Processing 36 (9) (1988) 1396–1403,
http://dx.doi.org/10.1109/29.90367.
69] P. Matisko, V. Havlena, Optimality Tests and Adaptive Kalman Filter,
16th IFAC Symposium on System Identification 16 (1) (2012) 1523–1528,
http://dx.doi.org/10.3182/20120711-3-BE-2027.00011.

70]  G. Box, G. Jenkins, G. Reinsel, Time Series Analysis, Holden-day, San Francisco,
1970.

dx.doi.org/10.1016/j.buildenv.2011.10.005
dx.doi.org/10.1016/j.enbuild.2009.10.001
dx.doi.org/10.1016/j.enconman.2007.03.018
dx.doi.org/10.1016/j.chemolab.2009.11.008
http://dx.doi.org/10.1016/j.enbuild.2012.08.040
dx.doi.org/10.1016/j.conengprac.2011.03.005
dx.doi.org/10.1080/19401493.2010.518631
dx.doi.org/10.1109/ACC.1999.786090
dx.doi.org/10.1109/29.90367
dx.doi.org/10.3182/20120711-3-BE-2027.00011

	Building modeling as a crucial part for building predictive control
	1 Introduction
	1.1 Motivation for advanced control in buildings
	1.2 Current control approaches, trends and possible improvements
	1.3 Dynamic model as a crucial part of MPC
	1.4 The contribution and a structure of the paper
	1.5 Notation

	2 Modeling and identification for buildings
	2.1 Physically-based models, simulation tools
	2.1.1 Application of a building energy performance simulation
	2.1.2 Control in building energy performance simulation tools

	2.2 Statistically-based identification approaches
	2.2.1 Subspace identification
	2.2.2 Prediction error methods
	2.2.3 Model predictive control relevant identification
	2.2.4 Estimation of ARX models
	2.2.5 Estimation of state space models
	2.2.6 Deterministic semi-physical modeling
	2.2.7 Probabilistic semi-physical modeling

	2.3 Comparison of the identification approaches

	3 Co-simulation based building modeling
	3.1 Coupling control and building simulation
	3.2 Combined procedure
	3.2.1 Choice of model inputs and outputs
	3.2.2 Data preparation and system identification


	4 Case studies
	4.1 Example I: a large office building in Munich
	4.1.1 Building description
	4.1.2 Building modeling

	4.2 Example II: artificial building modeled in Trnsys
	4.2.1 Building description
	4.2.2 Building modeling


	5 Concluding remarks
	Acknowledgment
	References


