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a  b  s  t  r  a  c  t

This  paper  presents  an  investigation  of  how  Model  Predictive  Control  (MPC)  and  weather  predictions  can
increase  the  energy  efficiency  in Integrated  Room  Automation  (IRA)  while  respecting  occupant  comfort.
IRA  deals  with  the  simultaneous  control  of  heating,  ventilation  and  air conditioning  (HVAC)  as  well as
blind positioning  and  electric  lighting  of  a building  zone  such  that  the room  temperature  as well as  CO2

and  luminance  levels  stay  within  given  comfort  ranges.  MPC  is  an  advanced  control  technique  which,
when  applied  to buildings,  employs  a model  of  the  building  dynamics  and  solves  an optimization  problem
to  determine  the  optimal  control  inputs.  In  this  paper  it is  reported  on  the  development  and  analysis  of  a
Stochastic  Model  Predictive  Control  (SMPC)  strategy  for building  climate  control  that  takes  into  account
hance-constrained control the uncertainty  due  to the  use of  weather  predictions.
As  first  step  the potential  of  MPC  was  assessed  by  means  of  a large-scale  factorial  simulation  study

that  considered  different  types  of  buildings  and  HVAC  systems  at four  representative  European  sites.
Then  for  selected  representative  cases  the  control  performance  of  SMPC,  the  impact  of the  accuracy  of
weather predictions,  as well  as the  tunability  of  SMPC  were  investigated.  The  findings  suggest  that  SMPC
outperforms  current  control  practice.

© 2011  Elsevier  B.V.  All rights  reserved.
. Introduction

Energy efficient management of building systems will play a
ajor role in minimizing overall energy consumption and costs,

ince, worldwide, the residential and commercial sectors use 2589
toe (mega tonnes of oil equivalent) in energy, which accounts for

lmost 40% of final energy use in the world; and in European coun-
ries, 76% of this energy goes towards comfort control in buildings
 heating, ventilation and air conditioning (HVAC) [1].  Because of
he long lifespan of buildings, it is urgent to increase the energy
fficiency of the existing HVAC systems, i.e. to reduce energy use

∗ Corresponding author.
E-mail addresses: oldewurtel@control.ee.ethz.ch (F. Oldewurtel),

parisio@unisannio.it (A. Parisio), colin.jones@epfl.ch (C.N. Jones),
yalistras@control.ee.ethz.ch (D. Gyalistras), markus.gwerder@siemens.com
M.  Gwerder), vanessa.stauch@meteoswiss.ch (V. Stauch), beat.lehmann@empa.ch
B.  Lehmann), morari@control.ee.ethz.ch (M.  Morari).

378-7788/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.enbuild.2011.09.022
and utility costs while guaranteeing comfort for the building’s occu-
pants.

This work focuses on an individual building zone or room and
considers Integrated Room Automation (IRA) [2],  which uses both
high energy cost actuators (e.g. chillers, gas boilers, conventional
radiators) and low energy cost actuators (e.g. blind operation and
evaporative cooling) for heating and cooling. The aim is to extend
the use of low energy cost actuators by making use of the thermal
storage capacity of the building.

The building dynamics are slow and the building is subject to
intermittent disturbances, i.e. the weather as well as the build-
ing’s appliances and occupants, who  generate heat, CO2, and set
demands for temperature, illuminance and air quality. This gives
rise to a constrained control problem (because of the occupants’
comfort requirements as well as the limited capacity of the actua-

tors) and the goal is to use weather predictions in order to be able
to make use of the thermal storage capacity of a building appro-
priately. Model Predictive Control (MPC) is an ideal framework to
tackle this problem.

dx.doi.org/10.1016/j.enbuild.2011.09.022
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
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The basic idea of MPC  is to exploit a model of the process to
redict the future evolution of the system and to compute control
ctions by optimizing a cost function depending on these predic-
ions; the aim being to extend the use of low energy cost actuators
or controlling the building and meeting the occupants’ require-

ents whereas to avoid the use of high energy cost actuators as
uch as possible.
However, the performance of such an approach depends on the

ccuracy of the weather predictions which have an inherent uncer-
ainty. Therefore, a tractable stochastic MPC  approach for building
limate control was developed, that explicitly takes into account
he uncertainty in the problem in order to improve the control
erformance.

The presented work was undertaken as part of the project Opti-
ontrol [3],  which aims at developing predictive control strategies
hat use weather and occupancy forecasts to increase the energy
fficiency in building climate control while maintaining high user
omfort and limiting peak electricity demand.

.1. Literature review

The use of disturbance predictions, in particular weather predic-
ions, for building climate control has been investigated in several
orks [4–8,2].  A link to the cited papers and a more extensive bib-

iography can be found on the OptiControl website [9].  In these
tudies the predictive strategies are shown to be more efficient
hen compared to conventional, non-predictive strategies for ther-
al  control of buildings. In [7] the authors compared different

redictive controllers taking into account weather predictions with
 non-predictive strategy for a solar domestic hot water system.
he simulation results showed that in particular for a small stor-
ge tank, the predictive control strategies achieved a lower energy
ost compared to the non-predictive strategy. In [10,11,8] the use
f a short-term weather predictor based on observed weather
ata for the control of active and passive building thermal stor-
ge was explored. The predicted variables included ambient air
emperature, relative humidity, and solar radiation. In [12] the
mplementation of MPC  for a chilled water plant was  investigated. A
redictive control strategy using a forecasting model of outdoor air
emperature was investigated in [6] for intermittently heated radi-
nt floor heating systems. The experimental results showed that the
redictive control strategy saved between 10% and 12% energy dur-

ng the cold winter months compared to the existing conventional
ontrol strategy. In [13] the authors described the testing of MPC
or a heating system on a real building in Prague. Energy savings in

 predictive Integrated Room Automation (IRA) were investigated
n [2].  The proposed model predictive strategy manipulated the
assive thermal storage of the building based on predicted future
isturbances while respecting comfort bounds for the room tem-
erature. The predictive control outperformed the non-predictive
ontrol because the room temperature could be kept within its
omfort bounds with minimum energy, i.e. low energy cost actu-
tors were exploited as much as possible. The effect of automated
linds and lighting control on heating and cooling requirements
ere studied in [5];  the authors investigated the reduction of the

nnual primary energy usage in building climate control for the case
f Rome. In the study of [4],  the influence of occupant behavior on
nergy consumption was investigated in a single room occupied by
ne person. The simulated occupant could manipulate six controls,
uch as turning on or off the heat and adjusting clothing. The sim-
lation results showed that occupant behavior significantly affects
he energy consumption in the room.
In conclusion, from the literature it can be learned that predic-
ive control strategies as well as including automated blinds and
ighting in the control action provide potential benefits for energy
fficient building climate control.
Fig. 1. MPC  scheme for building climate control.

The reasons for MPC  in buildings being rarely used until now are
primarily the difficulties/costs of obtaining a model of an (individ-
ual) building that can be used in the MPC  controller and the fact that
energy costs played a minor role in the past. Using the energy sav-
ings potential of buildings by applying MPC  has however become
more realistic recently due to several developments: there is a dras-
tic increase in computational power as well as the possibility to
shift computations to external servers/clouds. The use of simula-
tion tools in building planning are becoming standard and can help
to obtain models for the MPC  controller. The quality of weather
predictions is increasing and hence its usefulness for building cli-
mate control. Energy costs are rising, and finally, there is a desire
to handle time-varying electricity prices and the possibility of MPC
to do so.

1.2. Main idea and outline of the paper

The paper aims at introducing the possibilities and new develop-
ments in Stochastic MPC  to the building research and development
community; it is organized as follows. Section 2 explains the basic
concepts of MPC  with emphasis on the use for building climate
control. Section 3 describes the control strategies as well as a bench-
mark for building climate control that are used in the presented
study. Also the newly developed Stochastic MPC  approach is intro-
duced here. In Section 4 the MPC  implementation is explained in
detail and the differences between the MPC  options are described.
Section 5 reports on the performance of the proposed controllers
and, in Section 6, simulation results are presented and discussed.

2. Introduction to model predictive control for building
climate control

MPC  is a simple and satisfyingly intuitive approach to con-
strained control that has been successfully applied in many areas
over the last decades [14,15]. During each sampling interval, a finite
horizon optimal control problem is formulated and solved over a
finite prediction horizon. The result is a trajectory of inputs and
states into the future satisfying the dynamics and constraints of
the building while optimizing some given criteria.

In terms of building climate control, this means that at the cur-
rent point in time, a heating/cooling, etc. plan is formulated for the
next several hours to days, based on predictions of the upcoming
weather conditions, see Fig. 1. Predictions of any other disturbances
(e.g., internal gains), as well as time-dependencies of the control

costs (e.g., dynamic electricity prices) or of the constraints (e.g.,
thermal comfort range) can be readily included in the optimiza-
tion. The first step of the control plan is applied to the building,
determining the setting of all the heating, cooling and ventilation
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Table  1
Common types of cost functions.

Cost function type Mathematical description
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Table 2
Common types of constraints.

Constraints type Mathematical description

Linear constraint Axk ≤ b
Convex quadratic constraint (xk − x)T Q (xk − x) ≤ 1, Q � 0
Chance constraint P[Axk ≤ b] ≥ 1 − ˛,  ̨ ∈ (0, 0.5]
Second order cone constraint ‖Axk + b ‖ 2 ≤ Cx k + d
Linear cost lk(xk , uk) = cTuk

Probabilistic cost lk(xk, uk) = E[gk(xk, uk)]

ctuators, then the procedure is repeated at the next time instant.
y this receding horizon approach feedback is introduced into the
ystem, since the new optimal control problem solved at the begin-
ing of the next time interval is a function of the new measured
tate at that point in time and hence of any disturbances that have
eanwhile acted on the building.
A generic MPC  framework is given by the following finite-

orizon optimization problem:

(x0) = min
u0,...,uN−1

N−1∑
k=0

lk(xk, uk) Cost function (1)

subject to
(xk, uk) ∈ Xk × Uk Constraints

(2)

0 = x Current state (3)

k+1 = f (xk, uk) Dynamics (4)

here N is the prediction horizon, Xk and Uk are the constraint
ets respectively for states xk and inputs uk at time step k. The cost
unction and the constraints are the main pieces of the MPC  design,
he current state is used as the initial state for control predictions,
nd the dynamics of the system have to be modeled to a reasonable
recision such that a good control performance is achieved. In the
ollowing, a brief explanation of each of the four components in the
bove MPC  formulation is provided.

.1. Cost function

The cost function describes the desired behavior. This generally
erves two purposes:

Stability. It is common to choose the structure of the cost func-
tion such that the optimal cost forms a Lyapunov function for the
closed-loop system, and hence will guarantee stability.1 In prac-
tice, this requirement is generally relaxed for stable systems with
slow dynamics such as buildings, which leaves the designer free
to select the cost strictly on a performance basis.
Performance target.  The cost describes generally, but not always,
a combination of performance targets; and different cost weights
for the different targets can be used to specify a preference for one
closed-loop behavior over another, in building climate control,
e.g., minimizing energy or maximizing comfort.

everal common cost functions are in use, the majority of which are
onvex, which results in a simple optimization problem to solve.
ome common choices, which are also listed in Table 1, are:

Quadratic cost. The relative weighting between the states and the
inputs, i.e. the choice of the matrices Q and R provides a trade-off

between regulation quality and input energy. If the system has no
constraints, or the constraints are not active, then such a cost will

1 The given formulation would have to be changed slightly for guaranteeing sta-
ility.
Switched constraint if condition, then A1xk ≤ b1 else A2xk ≤ b2

Nonlinear constraint h(xk , uk) ≤ 0

be equivalent to the cost of the Linear Quadratic Regulator/Linear
Quadratic Gaussian controller (classic optimal control problem).

• Linear cost. If one wishes to minimize ‘amounts’, outliers, or eco-
nomically motivated signals, then the linear cost function is more
suitable than the quadratic one. This cost function would also be a
common choice for minimizing energy consumption of buildings.

• Probabilistic cost. If the system is subject to random disturbances,
then one may  choose to minimize the expected value of a function
gk(xk, uk), where gk(xk, uk) can for example be a quadratic or linear
cost function as introduced above.

2.2. Constraints

The ability to specify constraints in the MPC  formulation and
have the optimization routine handle them directly is the key
strength of the MPC  approach. Many different types of constraints
are used in practice, an overview of common types suitable for
building climate control is given in Table 2.

• Linear constraint.  This is the most common type of constraint and
is used to put upper and/or lower bounds on variables. Linear
constraints are the easiest to handle when solving optimization
problems and can also be used to approximate any convex con-
straint to an arbitrary degree of accuracy.

• Convex quadratic constraint.  This type of constraint is used
to bound a variable to be within an ellipsoid (i.e. a higher-
dimensional form of an ellipse). In building climate control, this
type of constraint would arise, e.g., when bounding the sum of
input energy amongst several actuators.

• Chance constraint.  If uncertainty is involved in the problem, this
type of constraint is used to formulate that its condition has
to be fulfilled with a predefined probability. Since an optimiza-
tion problem can only be solved if all variables are deterministic,
chance constraints need to be reformulated into deterministic
constraints.

• Second order cone constraint.  This type of constraint is called conic,
since the feasible region of the constraint has the form of a cone.
Second order cone constraints can – under special circumstances
– result from reformulations of chance constraints.

• Switched constraint.  This type of constraint comprises a set of con-
straints, where each one is relevant only if a predefined condition
is met. This is a common type of constraint in hybrid systems, i.e.
systems that exhibit both continuous and discrete time behavior.

• Non-linear constraint.  This type of constraint comprises any type
of constraint that does not fit into the above categories, where
h(xk, uk) can be any nonlinear function. In general, it is very diffi-
cult to handle this type of constraint when solving optimization
problems.

2.3. Current state
The system model is initialized to the measured current state
of the building and all predictions begin from the system in this
initial state. If some states cannot be measured but are observable,
a Kalman filter would commonly be used for state estimation.
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.4. Dynamics

The system model is a critical piece of the MPC  controller. In the
resented investigation a bilinear model was used, which will be
erived in Section 4.2.

. Control strategies and benchmarks for building climate
ontrol

In this section, three different control strategies are presented
hat are compared in the investigation: Rule-Based Control (RBC),
eterministic MPC  (DMPC), and Stochastic MPC  (SMPC). RBC is the
urrent control practice and is therefore used as a benchmark. The
ontrol strategies under investigation are DMPC, which is a stan-
ard MPC  formulation and SMPC, which is a newly developed MPC
trategy for the purpose of building climate control that can han-
le the uncertainties resulting from the use of weather forecasts.
ll control strategies are described below. How the costs and con-
traints are defined for the MPC  strategies is detailed in Section 4.

 second benchmark is given by the so-called Performance Bound
PB), which is defined as optimal control with perfect information,
n particular with a perfect weather prediction, i.e. the realization
s equal to the prediction. This is not an (implementable) controller
ut a concept, which is used as a benchmark.

.1. Control strategies

.1.1. Rule-Based Control (RBC)
The current control practice in Integrated Room Automation is

BC. RBC determines all control inputs based on a series of rules
f the form “if condition, then action”.  The conditions and actions
re usually associated with numerical parameters (e.g., threshold
alues) that need to be chosen. A good performance of RBC critically
epends on a good choice of rules and associated parameters.

.1.2. Deterministic MPC  (DMPC)
DMPC is the standard MPC  approach that is used in virtually

ll commercial MPC  applications. It uses the imperfect/uncertain
eather forecast and takes its control decision under the assump-

ion that the predictions are correct (i.e. equal to certain). Therefore,
t is also often called Certainty Equivalence Control. In the investiga-
ion DMPC was computed with a prediction horizon of 24 h and an
ourly time step.

.1.3. Stochastic MPC  (SMPC)
The SMPC formulation proposed here is very well suited for

he purpose of building climate control. This is due to the strat-
gy’s two key elements: first, the strategy directly accounts for
he uncertainty in the weather forecast and second, it allows to
ormulate so-called chance-constraints, i.e. to enforce constraints
o be fulfilled with a predefined probability, similarly as it is
equired in the building standards for room temperature con-
traints [16].

The presented approach can in principle also be extended to
aking into account uncertainty in occupancy predictions if the nec-
ssary occupancy data are available and a model for the prediction
rror is found, which leads to a Gaussian uncertainty (similarly
s for the weather predictions, see Section 4.1.2). In the present
ork, occupancy is however assumed to be perfectly predicted

nd the focus is on the consideration of uncertainty in weather

redictions.

In the next two sections the two components of SMPC are
etailed: the affine disturbance feedback, that accounts for the
ncertainty, and the reformulation of the chance constraints for
chieving a tractable optimization problem.
uildings 45 (2012) 15–27

3.1.3.1. Affine disturbance feedback. Consider the following
discrete-time linear model

xk+1 = Axk + Buk + Ewk, (5)

where xk is the state at time k, uk is the input, and wk is the unknown
disturbance acting on the system. We  choose the input applied at
time k in the future to be an affine function of the as yet unknown
disturbances, that will act on the system between now (time 0) and
time k:

uk :=
k−1∑
j=0

Mk,jwj + hk, (6)

where the matrices Mk,j and the vector hk are decision variables.
This means that the predicted inputs are responsive to the as yet
unknown disturbances.

It should be emphasized that since the MPC  controller is applied
in a receding-horizon fashion only the first step of the predicted
inputs is applied to the system and the first predicted input does
not depend on any disturbance. Only the predicted inputs of the
steps 2 . . . N − 1 are responsive to the disturbances; these inputs
are however never applied to the system, but are only used as a
computational procedure in order to make good decisions at the
current time step.

The main benefit of using this affine disturbance feedback
formulation is that the resulting optimization problem can be
formulated as a convex problem, so that it can be solved using com-
mon  commercial codes while providing a very good performance
[17,18].

The main limitation of this formulation is the added compu-
tational complexity of optimizing over Mk,j and hk rather than just
the inputs uk. This can however be mitigated by, e.g., restricting the
degrees of freedom of the matrices Mk,j or by optimizing over the
average of a small number of pre-computed matrices. These tech-
niques have been shown to be effective in building climate control
while significantly reducing the computational effort [21,20].

3.1.3.2. Chance constraints. The disturbances acting on the build-
ings are caused by weather, internal gains (occupancy and
equipment), and occupant behavior. Occupant behavior can have
a big impact on the performance of a control strategy. However,
particularly in the case of IRA, users are not likely to act directly
on the subsystems (e.g., manipulate radiator valves), but instead
communicate their wishes (such as changes in comfort parame-
ters) to the control system via an interface. The controller should
then carry out the corresponding actions and adjust its strategy
accordingly. Hence, disturbances due to occupant behavior were
not further considered. For internal gains it was assumed through-
out this investigation, that a corresponding schedule is perfectly
known in advance and, therefore, it is also not further addressed
in this paper. Instead, the focus of this paper is on how to incorpo-
rate information about the upcoming weather. The use of weather
forecasts, which are subject to errors, is considered; i.e. due to the
use of weather forecasts there is some inherent uncertainty in the
problem.

In order to cope with this uncertainty, a chance-constrained for-
mulation is employed, in which the future state of the building is
required to satisfy the constraints only with a given probability:

P[Axk ≤ b] ≥ 1 − ˛. (7)

This formulation has significant benefits for building climate con-
trol:
• the European standards specify that comfort bounds on room
temperature do not need to be guaranteed at all times, but may
be violated for a small fraction of time during the year, e.g., in
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extreme weather situations [16]. By using chance constraints, a
similar behavior can be encoded directly in the controller;
when combined with the affine disturbance feedback discussed
in the previous section, it is possible to formulate the resulting
optimization as a second order cone problem. Such problems are
convex and can be readily solved by existing commercial codes,
although they can be fairly computationally expensive at larger
scales.

he remainder of this document will refer to the Stochastic MPC
pproach in which comfort bounds are expressed as chance con-
traints and future control input signals are parameterized in terms
f an affine disturbance feedback as SMPC. A more detailed descrip-
ion of the SMPC approach can be found in [18,21].

.2. Theoretical benchmark

.2.1. Performance Bound (PB)
PB is defined as optimal control with perfect knowledge of both

he system dynamics as well as all future disturbances acting upon
he system. For analysis purposes, it is possible to formulate such a
roblem for a given building and a given year after the weather has
een recorded and hence is known. PB is itself not a controller but
ather a concept, that can serve as a benchmark for the investigated
ontrol strategies. In order to compute PB, the same MPC  algorithm
as used in the investigation as for DMPC, but with perfect weather
redictions. This means that PB is a theoretical construct to deter-
ine the performance limit of DMPC (in the ideal case of perfect
eather prediction). To compute PB, a prediction horizon of seven
ays and a control horizon (i.e. the number of time steps that control

nputs are applied in open-loop) of three days were used.

. Implementation of MPC

In this section, it is explained how the various inputs to
he controller (weather predictions, local weather and building

easurements, building model data, etc.) are translated to a math-
matical structure, that can be processed by standard optimization
oftware. An overview is given in Fig. 2. This picture also gives an
utline of this section.

.1. Step 1: weather prediction at building site

.1.1. Weather forecast
The weather predictions were given by archived forecasts of

he (deterministic) numerical weather prediction model COSMO-
 operated by MeteoSwiss [22]. The forecast data comprised the
utside air temperature, the wetbulb temperature and the incom-
ng solar radiation. At the time of the analysis, COSMO-7 delivered
ourly predictions for the next three days with an update cycle of
2 h and a horizontal grid mesh size of 6.6 km [23]. For this study,
our meteorological measurement sites in different European coun-
ries were chosen in order to represent different climatic zones in
urope. The list can be found in Table 3.

.1.2. Error model for weather forecast
The major challenge from a control point of view of using

umerical weather predictions lies in their inherent uncertainty
ue to the stochastic nature of atmospheric processes, the imper-
ect knowledge of the weather model’s initial conditions, as well as

odeling errors. The actual disturbance acting on the building can
e decomposed as
k = vk + ṽk, (8)

here vk is the COSMO-7 weather forecast and ṽk is the predic-
ion error at each time step k. In order to improve the estimation
Fig. 2. Decision flow of the Model Predictive Control strategy. The parts that have
to be designed a priori are in dotted boxes.

of future disturbances acting on the building, the following autore-
gressive model driven by Gaussian noise was identified based on
the archived weather forecasts and corresponding in situ measure-
ments

ṽk+1 = F ṽk + Kwk. (9)

It was assumed that wk follows a Gaussian distribution, wk∼N(0,  I).
Testing the randomness of residuals showed that the goodness of
fit was  satisfactory for all investigated cases, i.e. autocorrelation
coefficients for the residuals did not differ significantly from zero.
4.1.3. Local measured weather
For the local measured weather, archived measurements of the

Swiss Meteorological Network (SwissMetNet) at the same sites
as given in Table 3 were used. Having the sites for the weather
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Table  3
Sites for the weather measurements with a short description of the ambient weather and climate and their geographical heights.

Country Site name Abbrev. Weather and climate Height (masl)

Switzerland Zürich- SMA  Swiss plateau climate with 556
Fluntern typical inversion conditions
Lugano LUG Representative for the Swiss 273

climate south of the Alps
France Marseille MSM  Mediterranean climate 5
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Marignane
Austria  Wien WHW  

Hohe  Warte

orecasts and the local measured weather coincide means that there
s no spatial error between the building and the weather station.

.1.4. Kalman filter
In the presented setup, a Kalman filter is used to update the

redictions arriving every 12 h on an hourly basis with the incom-
ng new measurements, e.g. [24]. In a realistic setting the use of a
alman filter would also be beneficial in order to eliminate the sys-

ematic error due to the fact that the building is not situated directly
t the weather station site as well as due to the environment of the
uilding itself (shadow from other buildings, trees, etc.). Further-
ore, a Kalman filter would be used if not all system states can be
easured. In this study, it is however assumed that all states are
easured.

.2. Step 2: modeling

.2.1. Building modeling
There is a large amount of computer-aided modeling tools (e.g.,

RNSYS [25], EnergyPlus [26]), however, these are designed mainly
or estimating the energy usage of a building, and cannot be readily
sed for control. Instead, for this study, a thermal Resistance-
apacitance (RC)-network was constructed and employed.

For computing the building-wide energy use it is common prac-
ice to sum the energy uses of single rooms or building zones [2].
ollowing this approach, the focus was on the dynamics of a single
oom. First, the building thermal dynamics are explained in detail
nd then, the different actuators are introduced.

Illuminance and CO2 concentration were modeled by instan-
aneous responses since the time constants involved were much
maller than the hourly time step employed for the modeling and
imulations; modeling details of these are omitted. The interested
eader can find the details on this in [27].

The principle of the thermal dynamics modeling can easily be

escribed with a small example as given in Fig. 3. The room can be
hought of as network of first-order systems, where the nodes are
he states x and these are representing the room temperature or the

ig. 3. Heat transmission between nodes. The modeling is based on the description
f heat transmission between nodes (left) that are representing the temperatures
t  different locations in the building (right).
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temperatures in the walls, floor or ceiling. Then the heat transfer
rate is given by

dQ

dϑi︸︷︷︸
Ci

· dϑi

dt
=  A · Uie︸  ︷︷  ︸

Kie

(ϑe − ϑi),
(10)

where t denotes the time, ϑi and ϑe are the temperatures in layers
i and e respectively, Q is thermal energy, Ci denotes the thermal
capacitance of layer i, A is the cross-sectional area, and Uie the heat
transmission coefficient. The total heat transmission coefficient Kie
is computed as

1
Kie

= 1
Ki

+ 1
Ke

, (11)

where the heat transmission coefficients Ki and Ke depend on the
materials of i and e as well as on the cross sectional area of the heat
transmission.

For each node, i.e. state, such a differential equation as in (10)
is formulated. Control actions were introduced as direct heat flux
into nodes or by assuming that select resistances were variable. For
example, solar heat gains and luminous flux through the windows
were assumed to vary linearly with blinds position, i.e. the corre-
sponding heat transfer coefficients were multiplied with an input
u ∈ [0, 1]. This leads to a bilinear model, i.e. bilinear in state and
input as well as in disturbance and input. A detailed description of
the building model can be found in [27].

Concerning the actuators, five variants of HVAC systems typical
for IRA were investigated, which are listed in Table 4. The deliv-
ered heating or cooling power, the used air change rates, as well as
lighting and blind positioning correspond to the control inputs u.
Typically, some of the actuator efficiencies depend on the weather
(e.g., the efficiency of the cooling tower depends on the wetbulb
temperature) and the actuators have different response character-
istics (e.g., the response of the room temperature to changes in the
TABS is very slow whereas the response to heating with mechanical
ventilation is very fast). Finally, the actuators have different energy
costs. Further details on the simulation setup as well as the com-
plete RC model including its numerical values can be found in [28].
Based on this, the room dynamics can be described as

ϑk+1 = A(ϑ)ϑk + B(u)uk + B(v)vk +
m∑

i=1

[(B(vu,i)vk + B(xu,i)ϑk)uk,i],

(12)

where ϑk ∈ R
n is the state, uk ∈ R

m is the input, and vk ∈ R
p is the

weather input (outside temperature, wetbulb temperature, solar
radiation) at time step k, and the matrices A(ϑ), B(u), B(v), B(vu,i), and
B(xu,i) are of appropriate sizes. The sampling time is 1 h. The bilin-
ear part is due to the blinds (i.e. by changing the corresponding

actuator, the heat transfer between the room node and the outside
temperature is changed) and due to the cooling tower (i.e. by chang-
ing the corresponding actuator, the cooling with the cooling tower,
which is depending on the difference between room temperature
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Table  4
Overview of five variants of HVAC systems.

Automated subsystems 1 2 3 4 5

Blinds
√ √ √ √ √

Electric lighting
√ √ √ √ √

Mech. ventilation flow, heating, cooling –
√ √ √ √

Natural ventilation heating/cooling (night-time only) – – –
√

–
Cooled ceiling (capillary tube system)

√ √
– – –

Free  cooling with wet  cooling tower
√ √

– –
√

√ √
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Radiator heating
Floor  heating – 

Thermally activated building systems for heating/cooling –

nd wetbulb temperature, is changed). The overall building model
as validated by building experts [27] and its dynamic response

ompared to simulations with TRNSYS, which is a well known simu-
ation software for buildings and HVAC systems. The results showed
ood consistency of the calculated room temperatures [27].

Since the dynamic behavior of the building is bilinear between
nputs, states and weather parameters, the dynamic equations of
he MPC  problem result in a non-convex optimization, which can
e difficult to solve. The approach that is taken is a form of Sequen-
ial Linear Programming (SLP) for solving non-linear problems in
hich the system is iteratively linearized around the current solu-

ion, the optimization problem is solved and it is repeated until a
onvergence condition is met  [29].

.2.2. Augmentation of building model
In order to be able to better account for the uncertainty in the

eather prediction, the building model in (12) is augmented by the
rror model in (9).  Assuming that the building model was linearized
nd that the matrix B(u|k) contains all input matrices yields

ϑk+1
ṽk+1

]
 ︷︷  ︸

xk+1

=
[

A(ϑ) B(v)F
0 F

]
︸ ︷︷  ︸

A

[
ϑk

ṽk

]
︸  ︷︷  ︸

xk

+
[

B(u|k)
0

]
︸  ︷︷  ︸

Bk

uk +
[

B(v)
0

]
︸ ︷︷  ︸

H

vk

+
[

B(v)K
K

]
︸ ︷︷  ︸

E

wk (13)

nd hence

 xk+1 = Axk + Bkuk + Hvk + Ewk. (14)

Note that Bk is time-varying, hence, the overall model is a time-
arying linear model with the weather and internal gains prediction
k as external input and uncertainty wk∼N(0,  I).

.2.3. Building model data
One problem to get such a model as in (12) is to get the param-

ters such that the equations as in (10) can be set up. These
arameters can be either determined from the construction plan
ccording to the materials used and their tabular values or, alterna-
ively, the parameters can be determined via estimation methods.
or this investigation, only simulation models needed to be con-
tructed, therefore, tabular values for the materials were used. This
s detailed in [27].
.3. Step 3: formulate optimization problem

In this section, it is reported on how to formulate the optimiza-
ion problem. For this, one needs to choose an appropriate MPC
ormulation, then according to this construct the constraints and
ormulate the cost function and finally soften the constraints.
– – –
– –

√
–

– – –
√

4.3.1. MPC formulation
One needs to choose between the two principle MPC  for-

mulations: deterministic MPC  and stochastic MPC. This choice
determines the formulation of the constraints and the cost func-
tion. Hence, in the following these formulations are detailed for
both choices, deterministic MPC  and stochastic MPC.

4.3.2. Construct constraints
Two  types of constraints are to be enforced: input power lim-

its and room temperature comfort bounds (as well as bounds on
illuminance and CO2). The formulation of the room temperature
constraints is shown in detail, other constraints can be formulated
in a similar fashion. Denote with xt,1 the first element of the state
vector x of (14), which is the room temperature at time t. Since the
model (12) has been linearized, the predicted room temperature
at t time steps in the future is a linear function of the state now
(time t = 0) and the intervening inputs uk and weather wk acting on
the building. As a result, the room temperature xt,1 at time t in the
future can be written as

xt,1 = Lx0 +
t−1∑
k=0

(Gkuk + Vkvk + Wkwk) (15)

for appropriate vectors L, Gk, Vk and Wk, which are computed
directly from the output of Step 2. The critical issue is that the dis-
turbances wk are not known exactly, but they are only known to
follow a standard normal distribution. Three methods for enforcing
bounds on the temperature despite this disturbance were consid-
ered:

4.3.2.1. Deterministic MPC.

• Deterministic MPC  (DMPC)
When using DMPC or Certainty Equivalence MPC the idea is

to assume that the uncertainty wk takes its expected value, i.e.
wk = 0. The result is a simple linear constraint of the form

xmin
t,1 ≤ xt,1 = Lx0 +

t−1∑
k=0

(Gkuk + Vkvk) ≤ xmax
t,1 , (16)

where xmin
t,1 and xmax

t,1 are the desired upper and lower comfort
bounds, which can be time-varying, e.g., due to night-setbacks
for the room temperature.

The primary limitation of DMPC is the fact that, if the weather
does not actually equal the expected value, then the bound may
be violated. This is most often dealt with by artificially tightening
the upper and lower bounds, which provides a buffer zone and
can be effective for small variances. The cost to be paid is the
additional energy required to hold the room temperature further

away from the bounds.

• Performance Bound (PB)
For PB the same formulation for the constraints is used as

in (16). However, since there are perfect weather predictions
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available, wk actually takes its expected value and hence, the
bounds are not violated.

.3.2.2. Stochastic MPC.

Stochastic MPC  with chance constraints
One method of automatically determining an appropriate

amount to tighten the constraints (shown for the upper bound
here) is to formulate them as chance constraints as discussed in
Section 3.1.3.2.

P[xt,1 = Lx0 +
t−1∑
k=0

(Gkuk + Vkvk + Wkwk) ≤ xmax
t,1 ] ≥ 1 − ˛, (17)

where  ̨ is the desired probability of constraint satisfaction. For
the case of a standard Gaussian disturbance, a classic result by
Prékopa [30] allows to re-write this probabilistic constraint as a
linear condition

xt,1 = Lx0 +
t−1∑
i=0

(Gkuk + Vkvk) ≤ xmax
t,1 − ˇ, (18)

where  ̌ is a constant defined as

 ̌ = �−1(1 − ˛)||[W0 . . . Wt−1]||2, (19)

where � is the standard Gaussian cumulative distribution func-
tion. This deterministic reformulation is exact. Despite the
complex look of the above equation, it is similar to the tuning
of DMPC discussed above, where the tightening is set in order to
achieve a particular probability of constraint violation. While this
procedure is conceptually appealing, the value  ̌ grows quickly
with the length of the prediction horizon and can hold the tem-
perature very far away from the bounds, which costs lots of
energy. This is why the procedure discussed in the next section
was introduced.
Stochastic MPC  with chance constraints and affine disturbance feed-
back (SMPC)

A less conservative approach is a chance constraint formula-
tion combined with affine disturbance feedback, as discussed
in Section 3.1.3. In this approach, the input is set equal to an
affine function of the as yet unknown weather conditions, which
changes the probabilistic constraint to

P[xt,1 = Lx0 +
t−1∑
k=0

(Gkhk + Gk ·
k−1∑
j=0

Mk,jwj + Vkvk

+ Wkwk) ≤ xmax
t,1 ] ≥ 1 − ˛, (20)

where one can see that the new optimization variables Mk and hk
were added. This procedure theoretically allows to mitigate the
effect of the disturbance. This mitigation is, however, bounded
by the amount of input energy available to the controller, since
the approach requires that some input energy is allocated for
compensating for the disturbance (Mk), and some for steering
the system to a desired state (hk).

The added complexity of this approach arises from the fact that
the variable  ̌ introduced in the previous section is now a nonlin-
ear function of the new optimization variables Mk. The resulting
optimization problem has a second order cone constraint, which
is convex and therefore tractable. However, due to the large num-
ber of variables involved, solving this problem can be very time

consuming and as a result somewhat impractical. For this reason,
the matrices Mk were chosen during a pre-processing step and
fixed for the entire year, which turns the constraints into linear
constraints.
uildings 45 (2012) 15–27

4.3.3. Cost function
In this investigation the aim was  to minimize the expected value

of the energy use and therefore a probabilistic cost with a linear cost
function was  chosen

lk(xk, uk) = E[cT
k uk]. (21)

The linear cost is time-dependent in order to account, e.g., for elec-
tricity prices that differ between day- and night-time.

4.3.3.1. Deterministic MPC. For DMPC, the cost function is not
depending on wk, therefore the cost function simplifies to

lk(xk, uk) = cT
k uk. (22)

4.3.3.2. Stochastic MPC. If the affine disturbance feedback is used
as in the SMPC formulation, then the cost function is depending on
the uncertainty wj .

lk(xk, uk) = E

⎡
⎣cT

k (hk +
k−1∑
j=0

Mk,jwj)

⎤
⎦ . (23)

Since the cost is linear and the distribution Gaussian, the expected
value is a linear function of the mean values and therefore simplifies
to

lk(xk, uk) = E[cT
k hk]. (24)

Note that even though Mk does not appear explicitly in the cost
function, it appears in the constraints and influences the choice of
hk.

4.3.4. Soften constraints
It is not always possible to satisfy all constraints of the

building and so a standard relaxation-procedure, the so-called soft-
constraints [14,15],  is required, that chooses automatically which
constraints are to be violated first. This is achieved by adding vari-
ables to the optimization routine which allows every constraint to
be violated. These variables are however heavily penalized, which
forces them to zero, i.e. to the satisfaction of all constraints, if at all
possible. If this is not possible, then these additional variables give
the optimizer sufficient flexibility to always find a solution that can
be applied to the building. One can define the relative importance
of each constraint by tuning the relevant weighting matrices and
thereby have the system violate the least important first [31].

4.4. Step 4: solve optimization problem

Once the constraints and cost have been formulated, the result-
ing problem can be passed to a standard optimization routine. For
this work, the commercial package CPLEX [32] was used, since it is
effective for the large-scale and sparse problems that result.

4.5. Step 5: apply control action

The optimal solution of the formulated optimization problem
consists of a sequence of planned inputs over a time horizon into
the future. Only the first of these inputs is applied to the building
before re-solving the entire problem at the next point in time.

5. Performance of stochastic model predictive control in
building climate control

5.1. Controller assessment concept
In this section, it is reported on how the different controllers
were assessed. The performance of the controllers for one simu-
lated year is considered. Generally, the simulation of PB and RBC
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Table 5
Overview of variants for investigation of theoretical savings potential.

Attribute Value

Facade orientation North
South
South-east
South-west

Construction type Heavyweight
Lightweight

Building standard Swiss average
Passive house

Window area fraction Low
High

Internal gains level Low
High
ig. 4. Controller assessment concept. First the theoretical potential was  assessed
comparison of RBC and PB), then the practical potential was  assessed (comparison
f RBC and SMPC).

as computationally very easy and therefore it was possible to run
 large number of simulations for different building setups. The sim-
lation of DMPC and SMPC was computationally more expensive.
herefore, the investigation was done in two steps; first, a large-
cale simulation was carried out with PB and RBC and based on
hese results, DMPC and SMPC were compared to the correspond-
ng cases with PB and RBC for some chosen example cases. The
ssessment concept is shown in Fig. 4 and explained below.

 Theoretical potential: The first step consisted of the comparison of
RBC and PB. This was done because there is only hope for signifi-
cant energy savings, if the gap between RBC and PB is large. This
investigation was done in a large-scale factorial simulation study
for a broad range of cases representing different buildings, HVAC
systems, and weather conditions as described below. For further
details see [33,34]. Here the aim was to answer the following
questions:

Q1 Theoretical savings potential: How big are the theoretical
savings potentials in IRA?

Q2 Prediction horizon length: What is a suitable prediction
horizon length when applying MPC  with weather predictions
(depending on the building and HVAC system)?

 Practical potential: In this investigation the performance of RBC
and SMPC strategies was compared, but only for selected cases
from the theoretical potential study. It was also compared with
the performance of DMPC, which is expected to perform worse
than SMPC since it does not take into account the uncertainty in
the problem. Further details can be found in [35]. For the practical
potential the aim was to answer the following questions:

Q3 Performance of DMPC: What is the performance of DMPC
in IRA?

Q4 Performance of SMPC: What is the added value of SMPC in
IRA?

Q5 Importance of weather predictions: What impact do
weather forecasts and their quality have?

Q6 Tunability: How can MPC  facilitate to choose the desired
tradeoff between energy use and comfort?

In this study, the Non-Renewable Primary Energy (NRPE) usage
as assessed as well as the amount and number of constraint viola-

ions of the room temperature. A reasonable violation level for room
emperature as it would be tolerated according to the standards

ould be about 70 Kh/a2 [16]. In the investigation of the theoret-

cal potential, the variants listed in Table 5 were considered. The
ombination of all possible variants makes in total 1280 cases. In

2 1 Kh/a (=KelvinHour/Annum) corresponds to exceeding the temperature con-
traint by 1 K for 1 h within 1 year
HVAC systems 5 variants, see Table 4
Locations 4 variants, see Table 3

the investigation of the practical potential the cases listed in Table 6
were considered. These cases were selected to reflect frequent and
interesting building setups, with typical to large theoretical savings
potentials [35]. For DMPC and SMPC a Kalman filter was  applied as
described in Section 4.1.4. For PB and RBC, no Kalman filter was
necessary, since PB has a perfect prediction available and RBC does
not have any prediction available. All simulations were carried out
for one year and the used weather data was of the year 2007. In
the following, it is detailed how the six questions Q1 to Q6 were
addressed:
Q1 Theoretical savings potential

For the corresponding analysis PB and RBC were compared for
1280 cases. A case is given by one choice of the parameters listed
in Table 5.
Q2 Prediction horizon length

For the corresponding analysis PB with a prediction horizon of
seven days was compared with PB simulations with shorter pre-
diction horizons for the 1280 cases.
Q3 Performance of DMPC

For the corresponding analysis DMPC was employed using
weather forecasts from the COSMO-7 numerical weather predic-
tion model. All cases from Table 6 were analyzed. PB and RBC were
used as benchmarks.
Q4 Performance of SMPC

For the corresponding analysis SMPC was  employed using
weather forecasts from the COSMO-7 numerical weather predic-
tion model. Six example cases from Table 6 were analyzed. PB and
RBC were used as benchmarks.
Q5 Importance of Weather Predictions

This question was  treated by comparing SMPC performance
using COSMO-7 weather predictions, i.e. provided by a weather
service, versus using 24 h persistence predictions, i.e. continuous
recycling of the data from the last 24 h. Persistence is a common
benchmark in meteorology to assess the quality of predictions.
Again, the same six example cases from Table 6 were analyzed.
Q6 Tunability

It was  investigated for Building Case 1 in Table 6 how the desired
comfort level can be achieved with SMPC considering the tradeoff
between energy use and comfort violations. For this, the parameter

 ̨ was  varied.

6. Results

6.1. Theoretical energy savings potential
Q1 Theoretical savings potential
In the investigated 1280 cases, the reasonable amount of viola-

tions of 70 Kh/a was exceeded for many cases when using the RBC
controller. It was decided to only consider amounts of violation
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Table  6
Overview of investigated cases for determining the practical savings potential.

Building case Location Building standard HVAC system Facade orientation Construction type Window fraction Internal gains Ventil. IAQ controlled

1 Lugano sa 2 S High Low High Yes
2 Lugano sa 2 S High Low High No
3 Marseille  sa 2 S High Low High Yes
4  Marseille sa 2 S Low Low High Yes
5 Zurich  pa 2 SW High High High Yes
6  Zurich sa 2 SW High Low High Yes
7  Zurich pa 2 S High High High Yes
8  Zurich pa 2 S Low High High Yes
9 Zurich sa 2 S High Low High Yes
10  Zurich sa 2 S High Low High No
11 Vienna pa 2 SW High High High Yes
12  Vienna sa 2 S High Low High Yes
13  Zurich sa 3 S High Low High Yes
14  Vienna pa 3 SW High High Low Yes
15 Lugano sa 4 S High Low High Yes
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16 Zurich  pa 4 S 

17  Zurich pa 5 S 

18 Vienna pa 5 S

y RBC of <300 Kh/a. In this category fell 1228 of the 1280 cases.
ig. 5 shows the joint cumulative distribution of the theoretical
nergy savings potential (as additional NRPE use in % of PB) and the
mount of comfort violations in Kh/a. It can be seen that more than
alf of the considered cases show an additional NRPE use of more
han 40 % (rightmost brown column). Thus, for many cases there is

 significant savings potential, which can potentially be exploited
y SMPC. The selection of cases for the practical potential analysis
as based both on common building setups and large theoretical

avings potentials. The cases set is given in Table 6.
2 Prediction horizon length

In Fig. 6 the average prediction horizon length (averaged over
ll cases from the theoretical potential analysis), which is neces-
ary for reaching errors less than 5% compared to PB, is plotted.
he analysis is separated for different HVAC systems and the two
uilding standards. One can see that for most systems (on aver-

ge) a prediction horizon of 24 h is sufficient to deviate not more
han 5% from the PB performance. That is why it was decided to
se a 24 h prediction horizon for all investigated cases (except for
B simulations). The big difference in required prediction horizon

ig. 5. Joint cumulative distribution of a particular additional energy use with RBC
n  % of PB and a particular amount of violations by RBC in Kh/a.
High High High Yes
High High High Yes
High High High Yes

lengths that was found for HVAC system S5 can be attributed to
the fact that Passive house buildings have much lower heating and
cooling energy demand as compared to Swiss average buildings.
Accordingly, in the latter case the TABS’s thermal storage capac-
ity becomes more important, and because TABS are thermally inert
systems their predictive control requires in general much longer
prediction horizons.

6.2. Practical energy savings potential

Q3 Performance of DMPC
The performance of DMPC in terms of NRPE use and violations

for all cases in Table 6 was compared to PB and RBC and is plotted
in Fig. 7. DMPC and RBC had a larger NRPE use than PB and had
both many violations. When comparing RBC and DMPC, both RBC as
well as DMPC exceeded 70 Kh/a, but DMPC violated this threshold
more clearly. The number of violations were also typically larger
for DMPC. Note, for both RBC and DMPC the data points for Cases 4
and 8 are not shown because they were far beyond the axes ranges
of the plots.
Q4 Performance of SMPC

In order to assess the possible added value of SMPC as com-
pared to the simpler DMPC controller, PB, DMPC, RBC, and SMPC
for the cases in Table 6 were considered. Note, for SMPC only
cases 1,2,3,7,17, and 18 were computed. The results for SMPC
are also shown in Fig. 7. SMPC resulted in clearly less violations
than DMPC and for the available cases also had a comparable or
smaller NRPE use. The amount of violation was in all cases less
than 70 Kh/a.

In Fig. 8, SMPC is directly compared for the same six cases with
the performance of RBC. It is shown that with SMPC the additional
NRPE use for all cases can be reduced significantly compared to RBC.
In four of the six cases also the amount of violations can be reduced,
resulting in all cases in violations lying below the violation limit of
70 Kh/a.

Figs. 9 and 10 show the resulting room temperature profiles
throughout the whole year for Case 3 in Table 6 when using RBC
and SMPC respectively. It can be seen that SMPC has smaller and
less frequent violations than RBC. Furthermore, the diurnal tem-
perature variations are much smaller with SMPC, which is a more
favorable behavior in terms of comfort. This behavior is observable
for the other cases in a similar fashion.

Q5 Importance of weather predictions

Fig. 11 depicts the performance of SMPC with persistence pre-
dictions (SMPCpers) versus COSMO-7 weather predictions (SMPCC7),
(which was used for all investigations above). SMPCpers shows in all
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Fig. 6. Average prediction horizon length necessary for errors of less than 5% compared to PB for different HVAC systems and separated by Swiss average (left) and Passive
house (right).

e versus amount of violations (left) as well as number of violations (right).
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Fig. 7. Comparison of PB, DMPC, RBC and SMPC in terms of NRPE usag

ases a clearly higher NRPE use. In two cases each, SMPCpers shows
lightly less violations, equal amounts of violations, and clearly
arger violations than SMPCC7.
6 Tunability

For Building Case 1 from Table 6 the obtained Pareto frontier
ith respect to the annual NRPE use and annual amount of comfort
iolations is shown in Fig. 12.  The curve shows a smooth behavior
nd it can be seen that a decrease in the amount of violations from
0 to 40 Kh/a goes along with an additional NRPE use of 10%.

ig. 8. Comparison of SMPC and RBC for Cases 1, 2, 3, 7, 17, and 18 in Table 6.

Fig. 9. Room temperature profile of Case 3 in Table 6 using RBC for year 2007.

Fig. 10. Room temperature profile of Case 3 in Table 6 using SMPC for year 2007.
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Fig. 11. Comparison of SMPC with different weather predictions for Cases 1, 2, 3, 7,
17, and 18 in Table 6.
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ig. 12. Tuning of SMPC for Case 1 in Table 6. Pareto frontier of NRPE usage versus
omfort violations.

. Conclusion

This paper presents an investigation of the energy savings
otential in Integrated Room Automation (IRA) both when compar-

ng the current control practice (RBC) with a theoretical benchmark,
he Performance Bound (PB), and when comparing it with Deter-

inistic MPC  (DMPC) and Stochastic MPC  (SMPC). Unlike other
orks that often focus on a particular example, the energy sav-

ngs potential was estimated in a large-scale simulation study for a
arge number of different cases varying in the building type, HVAC
ystem, and weather conditions. The results of the large-scale simu-
ation study, that compared the performance of PB and RBC, showed
hat there is a significant energy savings potential for MPC  in many
ases.

A newly developed SMPC strategy for building climate control
as presented. This controller makes use of weather forecasts in

rder to compute how much energy and which low/high energy
ost actuators are needed to keep the room temperature in the
equired comfort levels. SMPC was shown to outperform RBC,
hich is the current control practice, not only in terms of Non-
enewable Primary Energy (NRPE) usage and thermal comfort
tatistics, but also in terms of advantageous room temperature

ynamics. SMPC resulted in much smaller diurnal temperature
ariations, and this behavior can be considered more favorable
ince the occupants are exposed to much smaller temperature vari-
tions during the day. When comparing to DMPC, SMPC was  found

[

uildings 45 (2012) 15–27

to be superior both in terms of NRPE usage and comfort violations.
This is due to the fact that unlike DMPC, SMPC is able to directly
account for the uncertainty of the weather forecast in its control
decisions. It was also shown that the performance of SMPC depends
on the quality of the weather prediction; SMPC performed clearly
better using COSMO-7 predictions compared to the simple persis-
tence predictions. A further benefit of SMPC is the easy tunability
of the tradeoff between NRPE usage and comfort violations with
the tuning parameter ˛, which describes the level of constraint
violations.

In summary, SMPC is a promising approach for building cli-
mate control. However, its performance in real applications can
be expected to vary with the quality of the model and the available
input data (model parameters, system states, weather predictions,
etc.) to an extent that remains to be investigated.

Acknowledgements

Swisselectric Research, the Competence Center Energy and
Mobility (CCEM-CH) and Siemens Building Technologies are grate-
fully acknowledged for their financial support of the OptiControl
project.

References

[1] International Energy Agency, Energy Efficiency Requirements in Building Codes
–  Energy Efficiency Policies for New Buildings, 2008.

[2] M.  Gwerder, J. Tödtli, Predictive control for integrated room automation, in:
Proc. of Clima – RHEVA World Congress 2005, Lausanne, Switzerland, 2005.

[3] OptiControl Project, www.opticontrol.ethz.ch (accessed 31.08.11).
[4] R. Andersen, B. Olesen, J. Toftum, Simulation of the effects of occupant

behaviour on indoor climate and energy consumption, in: Proc. of Clima –
RHEVA World Congress 2007, Helsinki, Finland, 2007.

[5] C.R.D. Bourgeois, I. Macdonald, Adding advanced behavioural models in whole
building energy simulation: a study on the total energy impact of manual and
automated lighting control, Energy and Buildings 38 (2006) 814–823.

[6]  S. Cho, M.  Zaheer-uddin, Predictive control of intermittently operated radi-
ant floor heating systems, Energy and Conversion Management 44 (2003)
1333–1342.

[7] W.  Grünenfelder, J. Tödtli, The use of weather predictions and dynamic pro-
gramming in the control of solar domestic hot water systems, in: Proc. of
Mediterranean Electrotechnical Conference (Melecon), Madrid, Spain, 1985.

[8]  G. Henze, D. Kalz, S. Liu, C. Felsmann, Experimental analysis of model-based
predictive optimal control for active and passive building thermal storage
inventory, International Journal of HVAC & Research 11 (2005) 189–214.

[9] OptiControl Website, www.opticontrol.ethz.ch/Literature.html (accessed
31.08.11).

10] G. Henze, C. Felsmann, G. Knabe, Evaluation of optimal control for active and
passive building thermal storage, International Journal of Thermal Sciences 43
(2004) 173–183.

11] G. Henze, C. Felsmann, G. Knabe, Impact of forecasting accuracy on predic-
tive  optimal control of active and passive building thermal storage inventory,
International Journal of HVAC & Research 10 (2004) 153–178.

12] Y. Ma,  F. Borrelli, B. Hencey, A. Packard, S. Bortoff, Model predictive control
of  thermal energy storage in building cooling systems, in: Proc. of 48th IEEE
Conference on Decision and Control and 28th Chinese Control Conference,
Shanghai, China, 2009.

13] J. Siroky, F. Oldewurtel, J. Cigler, S. Privara, Experimental analysis of model pre-
dictive control for an energy efficient building heating system, Applied Energy
88  (9) (2011) 3079–3087.

14] J. Maciejowski, Predictive Control with Constraints, Prentice Hall, 2002.
15] J. Rawlings, D. Mayne, Model Predictive Control: Theory and Design, Nob Hill

Publishing, 2009.
16] BSI, EN 15251:2007, Indoor Environmental Input Parameters for Design and

Assessment of Energy Performance of Buildings Addressing Indoor Air Quality,
Thermal Environment, Lighting and Acoustics.

17] P. Goulart, E. Kerrigan, J. Maciejowski, Optimization over state feedback policies
for robust control with constraints, Automatica 42 (2006) 523–533.

18] F. Oldewurtel, C. Jones, M.  Morari, A Tractable approximation of chance con-
strained stochastic MPC based on affine disturbance feedback, in: Proc. of 47th
IEEE Conf. on Decision and Control, Cancun, Mexico, 2008, pp. 4731–4736.

21] F. Oldewurtel, R. Gondhalekar, C. Jones, M.  Morari, Blocking parameterizations
for improving the computational tractability of affine disturbance feedback

MPC  Problems, in: Proc. of 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference, Shanghai, China, 2009.

20] A. Parisio, Handling Uncertainty with Application to Indoor Climate Control
and Resource Allocation Planning, PhD Thesis, University of Sannio, Benevento,
Italy, 2009.

http://www.opticontrol.ethz.ch
http://www.opticontrol.ethz.ch/Literature.html


 and B

[

[

[

[
[

[

[

[

[

[

[

[

[

F. Oldewurtel et al. / Energy

21]  F. Oldewurtel, A. Parisio, C. Jones, M.  Morari, D. Gyalistras, M. Gwerder, V.
Stauch, B. Lehmann, K. Wirth, Energy efficient building climate control using
stochastic model predictive control and weather predictions, in: Proc. of Amer-
ican Control Conference, 2010.

22] J. Steppeler, G. Doms, U. Schättler, H. Bitzer, A. Gassmann, U. Damrath, G.
Gregoric, Meso-gamma scale forecasts using the non-hydrostatic model LM,
Meteorology and Atmospheric Physics 82 (2003) 75–96.

23] V. Stauch, F. Schubiger, P. Steiner, Local weather forecasts and observations,
Tech. Rep., in [28], 2009.

24] F. Anderson, J. Moore, Optimal Filtering, Prentice Hall, 1979.
25] TRNSYS Simulation Software, http://sel.me.wisc.edu/trnsys/ (accessed

31.08.11).
26] EnergyPlus Energy Simulation Software, http://apps1.eere.energy.gov/
buildings/energyplus/ (accessed 31.08.11).
27] B. Lehmann, K. Wirth, S. Carl, V. Dorer, T. Frank, M.  Gwerder, Modeling of

buildings and building systems, Tech. Rep., in [28], 2009.
28] D. Gyalistras, M.  Gwerder (Eds.), Use of weather and occupancy forecasts for

optimal building climate control (OptiControl): two  years progress report,

[

[

uildings 45 (2012) 15–27 27

Tech. Rep., ETH Zurich and Siemens Building Technologies Division, Siemens
Switzerland Ltd., Zug, Switzerland, 2009.

29] R. Griffith, R. Steward, A nonlinear programming technique for the optimization
of  continuous processing systems, Journal of Management Science 7 (1961)
379–392.

30] A. Prékopa, Stochastic Programming, third ed., Kluwer Academic Publishers,
Dordrecht, Netherlands, 1995.

31] E. Kerrigan, Robust Constraint Satisfaction: Invariant Sets and Predictive Con-
trol, PhD Thesis, University of Cambridge, 2000.

32] CPLEX Optimization Software, www-01.ibm.com/software/integration/
optimization/cplex-optimizer/ (accessed 31.08.11).

33] D. Gyalistras, B. Lehmann, K. Wirth, M.  Gwerder, F. Oldewurtel, V.
Stauch, Performance bounds and potential assessment, Tech. Rep., in [28],

2009.

34] D. Gyalistras, K. Wirth, B. Lehmann, Analysis of savings potentials and peak
electricity demand, Tech. Rep., in [28], 2009.

35] F. Oldewurtel, D. Gyalistras, C. Jones, A. Parisio, M.  Morari, Analysis of model
predictive control strategies, Tech. Rep., in [28], 2009.

http://sel.me.wisc.edu/trnsys/
http://apps1.eere.energy.gov/buildings/energyplus/
http://apps1.eere.energy.gov/buildings/energyplus/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

	Use of model predictive control and weather forecasts for energy efficient building climate control
	1 Introduction
	1.1 Literature review
	1.2 Main idea and outline of the paper

	2 Introduction to model predictive control for building climate control
	2.1 Cost function
	2.2 Constraints
	2.3 Current state
	2.4 Dynamics

	3 Control strategies and benchmarks for building climate control
	3.1 Control strategies
	3.1.1 Rule-Based Control (RBC)
	3.1.2 Deterministic MPC (DMPC)
	3.1.3 Stochastic MPC (SMPC)
	3.1.3.1 Affine disturbance feedback
	3.1.3.2 Chance constraints


	3.2 Theoretical benchmark
	3.2.1 Performance Bound (PB)


	4 Implementation of MPC
	4.1 Step 1: weather prediction at building site
	4.1.1 Weather forecast
	4.1.2 Error model for weather forecast
	4.1.3 Local measured weather
	4.1.4 Kalman filter

	4.2 Step 2: modeling
	4.2.1 Building modeling
	4.2.2 Augmentation of building model
	4.2.3 Building model data

	4.3 Step 3: formulate optimization problem
	4.3.1 MPC formulation
	4.3.2 Construct constraints
	4.3.2.1 Deterministic MPC
	4.3.2.2 Stochastic MPC

	4.3.3 Cost function
	4.3.3.1 Deterministic MPC
	4.3.3.2 Stochastic MPC

	4.3.4 Soften constraints

	4.4 Step 4: solve optimization problem
	4.5 Step 5: apply control action

	5 Performance of stochastic model predictive control in building climate control
	5.1 Controller assessment concept

	6 Results
	6.1 Theoretical energy savings potential
	6.2 Practical energy savings potential

	7 Conclusion
	Acknowledgements
	References


